similar to: randomForest outlier return NA

Displaying 20 results from an estimated 3000 matches similar to: "randomForest outlier return NA"

2008 Jun 18
2
randomForest outlier
I try to use ?randomForest to find variables that are the most important to divide my dataset (continuous, categorical variables) in two given groups. But when I plot the outliers: plot(outlier(FemMalSex_NAavoid88.rf33, cls=FemMalSex_NAavoid88$Sex), type="h",col=c("red","green")[as.numeric(FemMalSex_NAavoid88$Sex)]) it seems to me that all my values appear as
2008 Jun 15
1
randomForest, 'No forest component...' error while calling Predict()
Dear R-users, While making a prediction using the randomForest function (package randomForest) I'm getting the following error message: "Error in predict.randomForest(model, newdata = CV) : No forest component in the object" Here's my complete code. For reproducing this task, please find my 2 data sets attached ( http://www.nabble.com/file/p17855119/data.rar data.rar ).
2013 Feb 03
3
RandomForest, Party and Memory Management
Dear All, For a data mining project, I am relying heavily on the RandomForest and Party packages. Due to the large size of the data set, I have often memory problems (in particular with the Party package; RandomForest seems to use less memory). I really have two questions at this point 1) Please see how I am using the Party and RandomForest packages. Any comment is welcome and useful.
2008 Dec 26
2
about randomForest
hello, I want to use randomForest to classify a matrix which is 331030?42,the last column is class signal.I use ? Memebers.rf<-randomForest(class~.,data=Memebers,proximity=TRUE,mtry=6,ntree=200) which told me" the error is matrix(0,n,n) set too elements" then I use: Memebers.rf<-randomForest(class~.,data=Memebers,importance=TRUE,proximity=TRUE) which told me"the error is
2004 Apr 05
3
Can't seem to finish a randomForest.... Just goes and goe s!
When you have fairly large data, _do not use the formula interface_, as a couple of copies of the data would be made. Try simply: Myforest.rf <- randomForest(Mydata[, -46], Mydata[,46], ntrees=100, mtry=7) [Note that you don't need to set proximity (not proximities) or importance to FALSE, as that's the default already.] You might also want to use
2003 Apr 12
5
rpart vs. randomForest
Greetings. I'm trying to determine whether to use rpart or randomForest for a classification tree. Has anybody tested efficacy formally? I've run both and the confusion matrix for rf beats rpart. I've looking at the rf help page and am unable to figure out how to extract the tree. But more than that I'm looking for a more comprehensive user's guide for randomForest including
2004 Apr 05
2
Can't seem to finish a randomForest.... Just goes and goes!
Alternatively, if you can arrive at a sensible ordering of the levels you can declare them ordered factors and make the computation feasible once again. Bill Venables. -----Original Message----- From: r-help-bounces at stat.math.ethz.ch [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of Torsten Hothorn Sent: Monday, 5 April 2004 4:27 PM To: David L. Van Brunt, Ph.D. Cc: R-Help Subject:
2010 May 25
1
Need Help! Poor performance about randomForest for large data
Hi, dears, I am processing some data with 60 columns, and 286,730 rows. Most columns are numerical value, and some columns are categorical value. It turns out that: when ntree sets to the default value (500), it says "can not allocate a vector of 1.1 GB size"; And when I set ntree to be a very small number like 10, it will run for hours. I use the (x,y) rather than the (formula,data).
2005 Jul 21
4
RandomForest question
Hello, I'm trying to find out the optimal number of splits (mtry parameter) for a randomForest classification. The classification is binary and there are 32 explanatory variables (mostly factors with each up to 4 levels but also some numeric variables) and 575 cases. I've seen that although there are only 32 explanatory variables the best classification performance is reached when
2006 Jan 27
1
save trained randomForest model
I used the following command to train a randomForest model train.rf <- randomForest(grp ~ ., data=tr, ntree=100, mtry=50) My question is how to save the trained model so that it can be loaded later for testing new samples? Thanks, Luk --------------------------------- [[alternative HTML version deleted]]
2005 Aug 15
2
randomForest Error passing string argument
I'm attempting to pass a string argument into the function randomForest but I get an error: state <- paste(list("fruit ~", "apples+oranges+blueberries", "data=fruits.data, mtry=2, do.trace=100, na.action=na.omit, keep.forest=TRUE"), sep= " ", collapse="") model.rf <- randomForest(state) Error in if (n==0) stop ("data(x) has 0
2010 Nov 10
2
randomForest can not handle categorical predictors with more than 32 categories
I received this error Error in randomForest.default(m, y, ...) : Can not handle categorical predictors with more than 32 categories. using below code library(randomForest) library(MASS) memory.limit(size=12999) x <- read.csv("D:/train_store_title_view.csv", header=TRUE) x <- na.omit(x) set.seed(131) sales.rf <- randomForest(sales ~ ., data=x, mtry=3, importance=TRUE) My
2011 Jan 03
1
randomForest speed improvements
Hi there, We're trying to use randomForest to do some predictions. The test-harness for our code is pretty straightforward: library ('randomForest'); data202 <- read.csv ("random.csv", header=TRUE); x<- data202[1:50000,1:6]; y<- data202[1:50000,8]; y<- y[,drop=TRUE]; x2 <- data202[50001:60000,1:6]; y2 <- data202[50001:60000,8]; y2 <-
2010 May 05
1
What is the default nPerm for regression in randomForest?
Could not find it in ?randomForest. Thank you for your help! -- Dimitri Liakhovitski Ninah.com Dimitri.Liakhovitski at ninah.com
2010 Mar 16
1
Regarding variable importance in the randomForest package
For anyone who is knowledgeable about the randomForest package in R, I have a question: When I look at the variable importance for data, I see that my response variable is included along with my predictor variables. That is, I am getting a MeanDecreaseGini for my response variable, and therefore it seems as though it is being treated as a predictor variable. my code (just in case it helps) :
2010 Nov 09
1
randomForest parameters for image classification
I am implementing an image classification algorithm using the randomForest package. The training data consists of 31000+ training cases over 26 variables, plus one factor predictor variable (the training class). The main issue I am encountering is very low overall classification accuracy (a lot of confusion between classes). However, I know from other classifications (including a regular decision
2006 Mar 08
8
how to use the randomForest and rpart function?
Hi all, I am trying to play around with the randomForest function for classification. I know its performance is great. I am currently using the default options. It has many options. How do I further tweak the options so that I can make its performance even better? What are the options that are mostly used? Thanks a lot! M [[alternative HTML version deleted]]
2009 Aug 13
2
randomForest question--problem with ntree
Hi, I would like to use a random Forest model to get an idea about which variables from a dataset may have some prognostic significance in a smallish study. The default for the number of trees seems to be 500. I tried changing the default to ntree=2000 or ntree=200 and the results appear identical. Have changed mtry from mtry=5 to mtry=6 successfully. Have seen same problem on both a Windows
2011 Nov 16
0
problem to tunning RandomForest, an unexpected result
Dear Researches, I am using RF (in regression way) for analize several metrics extract from image. I am tuning RF setting a loop using different range of mtry, tree and nodesize using the lower value of MSE-OOB mtry from 1 to 5 nodesize from1 to 10 tree from 1 to 500 using this paper as refery Palmer, D. S., O'Boyle, N. M., Glen, R. C., & Mitchell, J. B. O. (2007). Random Forest Models
2009 Aug 05
0
get NA from outlier{randomForest}
Hi I have a data frame like this: V1 V2 V3 V4 Min. :0.01146 Min. :0.0006714 Min. :0.004912 Min. : 0 1st Qu.:0.03938 1st Qu.:0.0072805 1st Qu.:0.052719 1st Qu.:1150 Median :0.04224 Median :0.0077581 Median :0.056388 Median :1150 Mean :0.04010 Mean :0.0074669 Mean :0.052602 Mean :1173 3rd