Displaying 20 results from an estimated 3000 matches similar to: "Logistic regression with multiple imputation"
2009 Apr 24
1
Multiple Imputation in mice/norm
I'm trying to use either mice or norm to perform multiple imputation to fill
in some missing values in my data. The data has some missing values because
of a chemical detection limit (so they are left censored). I'd like to use
MI because I have several variables that are highly correlated. In SAS's
proc MI, there is an option with which you can limit the imputed values that
are
2008 Jun 30
3
Is there a good package for multiple imputation of missing values in R?
I'm looking for a package that has a start-of-the-art method of
imputation of missing values in a data frame with both continuous and
factor columns.
I've found transcan() in 'Hmisc', which appears to be possibly suited
to my needs, but I haven't been able to figure out how to get a new
data frame with the imputed values replaced (I don't have Herrell's book).
Any
2007 Jun 07
1
MITOOLS: Error in eval(expr, envir, enclos) : invalid 'envir' argument
R-users & helpers:
I am using Amelia, mitools and cmprsk to fit cumulative incidence curves
to multiply imputed datasets. The error message that I get
"Error in eval(expr, envir, enclos) : invalid 'envir' argument"
occurs when I try to fit models to the 50 imputed datasets using the
"with.imputationList" function of mitools. The problem seems to occur
2011 Jan 31
2
Rubin's rules of multiple imputation
Hello all, if I have multiple imputed data sets, is there a command or
function in R in any package you know of to combine those, I know one common
MI approach is rubins rules, is there a way to do this using his rules or
others? I know theres ways, like using Amelia from Gary King's website to
create the imputed data sets, but how to make them into one or combine them
for analysis.
2010 Dec 22
3
Help with Amelia
Hi
I have used the amelia command from the Amelia R package. this gives me a number
of imputed datasets.
This may be a silly question, but i am not a statistician, but I am not sure how
to combine these results to obtain the imputed dataset to usse for further
statistical analysis. I have looked through the amelia and zelig manuals but
still can not find the answer. This maybe because I dont
2005 Jun 28
1
sample R code for multiple imputation
Hi,
I have a big dataset which has many missing values and want to implement
Multiple imputation via Monte carlo markov chain by following J Schafer's
"Analysis of incomplete multivariate data". I don't know where to begin
and is looking for a sample R code that implements multiple imputation
with EM, MCMC, etc....
Any help / suggestion will be greatly appreciated.
David
2012 Jun 03
1
Multiple imputation, multinomial response & random effects
Dear R-group,
Could somebody recommend a package that can deal with a multinomial response variable (choice of breeding tactic in mice, which has four unordered levels), multiply-imputed data (generated using the Amelia package) and two non-nested random effects: individual identity (133 individuals made up to four choices each) and year (for which there are six levels and sample size varies
2011 Mar 31
2
fit.mult.impute() in Hmisc
I tried multiple imputation with aregImpute() and
fit.mult.impute() in Hmisc 3.8-3 (June 2010) and R-2.12.1.
The warning message below suggests that summary(f) of
fit.mult.impute() would only use the last imputed data set.
Thus, the whole imputation process is ignored.
"Not using a Design fitting function; summary(fit)
will use standard errors, t, P from last imputation only.
Use
2005 Jul 08
2
missing data imputation
Dear R-help,
I am trying to impute missing data for the first time using R. The norm
package seems to work for me, but the missing values that it returns seem
odd at times -- for example it returns negative values for a variable that
should only be positive. Does this matter in data analysis, and/or is
there a way to limit the imputed values to be within the minimum and
maximum of the actual
2003 Dec 08
1
Design functions after Multiple Imputation
I am a new user of R for Windows, enthusiast about the many functions
of the Design and Hmisc libraries.
I combined the results of a Cox regression model after multiple imputation
(of missing values in some covariates).
Now I got my vector of coefficients (and of standard errors).
My question is: How could I use directly that vector to run programs such
as 'nomogram', 'calibrate',
2012 Oct 30
1
Amelia imputation - column grouping
Hi everybody,
I am quite new to data imputation, but I would like to use the R package '
Amelia II: A Program for Missing Data '. However, its unclear to me how
the input for amelia should look like:
I have a data frame consisting of numerous coulmns, which represent
different experimental conditions, whereby each column has 3 replicates. I
want amelia to perform an imputation across
2007 Mar 02
1
Mitools and lmer
Hey there
I am estimating a multilevel model using lmer. I have 5 imputed datasets so
I am using mitools to pool the estimates from the 5
>
> datasets. Everything seems to work until I try to use
> MIcombine to produced pooled estimates. Does anyone have any suggestions? The betas and the standard errors were extracted with no problem so everything seems to work smoothly up until
2003 Jun 16
1
Hmisc multiple imputation functions
Dear all;
I am trying to use HMISC imputation function to perform multiple imputations
on my data and I keep on getting errors for the code given in the help
files.
When using "aregImpute" the error is;
>f <- aregImpute(~y + x1 + x2 + x3, n.impute=100)
Loading required package: acepack
Iteration:1 Error in .Fortran("wclosepw", as.double(w), as.double(x),
2010 Aug 10
1
Multiple imputation, especially in rms/Hmisc packages
Hello, I have a general question about combining imputations as well as a
question specific to the rms and Hmisc packages.
The situation is multiple regression on a data set where multiple
imputation has been used to give M imputed data sets. I know how to get
the combined estimate of the covariance matrix of the estimated
coefficients (average the M covariance matrices from the individual
2003 Jun 12
3
Multiple imputation
Hi all,
I'm currently working with a dataset that has quite a few missing
values and after some investigation I figured that multiple imputation
is probably the best solution to handle the missing data in my case. I
found several references to functions in S-Plus that perform multiple
imputation (NORM, CAT, MIX, PAN). Does R have corresponding functions?
I searched the archives but was not
2005 May 04
3
Imputation
I have timeseries data for some factors, and some missing values are there in those factors, I want impute those missing values without disturbing the distribution of that factor, and maintaining the correlation with other factors. Pl. suggest me some imputation methods.
I tried some functions in R like aregImpute, transcan. After the imputation I am unable to retrive the data with imputed
2005 Jan 19
1
Imputation missing observations
>From Internet I downloaded the file Hmisc.zip and used it for R package updation. and R gave the message 'Hmisc' successfull unpacked.
But when I use the functions like aregImpute the package is displaying coundn't find the function
Where as in help.search it is giving that use of the function
>
2008 Nov 26
1
multiple imputation with fit.mult.impute in Hmisc - how to replace NA with imputed value?
I am doing multiple imputation with Hmisc, and
can't figure out how to replace the NA values with
the imputed values.
Here's a general ourline of the process:
> set.seed(23)
> library("mice")
> library("Hmisc")
> library("Design")
> d <- read.table("DailyDataRaw_01.txt",header=T)
> length(d);length(d[,1])
[1] 43
[1] 2666
2003 Jul 28
2
aregImpute: warning message re: acepack and mace
hi,
i'm trying to learn how to use aregImpute by doing the examples provided with
the package, and after installing Hmisc.1.6-1.zip (for Windows),
and running the very first example on R 1.7.1, i get an error message warning
me about "mace" (see below) and acepack.
i found the acepack package, but its filename ends in tar.gz
and i'm finding it difficult to open (because its
2010 Nov 07
2
How is MissInfo calculated? (mitools)
What does missInfo compute and how is it computed?
There is only 1 observation missing the ethnic3 variable. There is no other
missing data.
N=1409
> summary(MIcombine(mod1))
Multiple imputation results:
with(rt.imp, glm(G1 ~ stdage + female + as.factor(ethnic3) + u,
family = binomial()))
MIcombine.default(mod1)
results se
(lower upper)