similar to: validate (rms package) using step instead of fastbw

Displaying 20 results from an estimated 2000 matches similar to: "validate (rms package) using step instead of fastbw"

2011 Apr 28
1
Nomograms from rms' fastbw output objects
There is both a technical and a theoretical element to my question... Should I be able to use the outputs which arise from the fastbw function as inputs to nomogram(). I seem to be failing at this, -- I obtain a subscript out of range error. That I can't do this may speak to technical failings, but I suspect it is because Prof Harrell thinks/knows it injudicious. However, I can't
2008 Oct 11
1
step() and stepAIC()
The birth weight example from ?stepAIC in package MASS runs well as indeed it should. However when I change stepAIC() calls to step() calls I get warning messages that I don't understand, although the output is similar. Warning messages: 1: In model.response(m, "numeric") : using type="numeric" with a factor response will be ignored (and three more the same.) Checked
2011 Mar 01
0
Major update to rms package
A new version of rms is now available on CRAN for Linux and Windows (Mac will probably be available very soon). Largest changes include latex methods for validate.* and adding the capability to force a subset of variables to be included in all backwards stepdown models (single model or validation by resampling). Recent updates: * In survplot.rms, fixed bug (curves were undefined if
2011 Mar 01
0
Major update to rms package
A new version of rms is now available on CRAN for Linux and Windows (Mac will probably be available very soon). Largest changes include latex methods for validate.* and adding the capability to force a subset of variables to be included in all backwards stepdown models (single model or validation by resampling). Recent updates: * In survplot.rms, fixed bug (curves were undefined if
2005 Mar 30
1
fastbw question
Hello I am running R 2.0.1 on Windows, I am attempting to use Frank Harrell's 'fastbw' function (from the Design library), but I get an error that the fit was not created with a Design library fitting function; yet when I go to the help for fastbw (and also look in Frank's book Regression Modeling Strategies) it appears that fastbw should work with a model created with lm.....
2013 Apr 19
2
NAMESPACE and imports
I am cleaning up the rms package to not export functions not to be called directly by users. rms uses generic functions defined in other packages. For example there is a latex method in the Hmisc package, and rms has a latex method for objects of class "anova.rms" so there are anova.rms and latex.anova.rms functions in rms. I use:
2011 Aug 19
0
rms:fastbw variable selection differences with AIC .vs. p value methods
I want to employ a parsimonious model to draw nomograms, as the full model is too complex to draw nomograms readily (several interactions of continuous variables). However, one interesting variable stays or leaves based on whether I choose "p value" or "AIC" options to fastbw(). My question boils down to this: Is there a theoretical reason to prefer one over another?
2010 Oct 12
1
Help with function writing
Hello all I have what seems like a simple question but have not been able to find an answer on the forum. I'm trying to define a function which involves regression models and a large number of covariates. I would like the function to accept any number of covariates and, ideally, I would like to be able to enter the covariates in a group (e.g. as a list) rather than individually. Is there any
2005 Mar 10
2
Logistic regression goodness of fit tests
I was unsure of what suitable goodness-of-fit tests existed in R for logistic regression. After searching the R-help archive I found that using the Design models and resid, could be used to calculate this as follows: d <- datadist(mydataframe) options(datadist = 'd') fit <- lrm(response ~ predictor1 + predictor2..., data=mydataframe, x =T, y=T) resid(fit, 'gof'). I set up a
2008 Feb 20
1
fastbw() in Design works for continuous variable?
Hi, it seems that the fastbw() in the Design package only works with variable of class "factor" according to the help page if I understand correctly. Is there any R function/package that do stepwise variable selection for a Cox model with continuous independent variables? Thank you John ____________________________________________________________________________________ Looking
2013 Sep 12
1
Getting "Approximate Estimates after Deleting Factors" out from fastbw()
Hello! I am using relatively simple linear model. By applying fastbw() on ols() results from rms package I would like to get subtable "Approximate Estimates after Deleting Factors". However, it seems this is not possible. Am I right? I can only get coefficients for variables kept in the model (for example: x$coefficients), but not S.E., Wald's Z and P? Is there any easy way to
2009 Oct 27
1
output (p-values) of "fastbw" in Design package
I am using the validate option in the Design package with the Cox survival model. I am using the bw=T option which, like the fastbw function, performs a backward elimination variable selection The output includes a series of columns (below) giving information on eliminated variables. My question is that I am unsure of the difference between the 2 p-values given (the one after Chi-Sq and the one
2009 Feb 06
1
Using subset in validate() in Design, what is the correct syntax?
Hi I am trying to understand how to get the validate() function in Design to work with the subset option. I tried this: ovarian.cph=cph(Surv(futime, fustat) ~ age+factor(ecog.ps)+strat(rx), time.inc=1000, x=T, y=T, data=ovarian) validate(ovarian.cph) #fine when no subset is used, but the following two don't work: > validate(ovarian.cph, subset=ovarian$ecog.ps==2) Error in
2013 Apr 30
0
Fastbw() function: grouping of variables
Dear R users, For the purpose of validating a prediction model using validate() from the rms package, I am running into some trouble with using the fastbw() function breaking up natural groups of variables. Is there any way I can specify to keep certain variable together? In particular, if interactions are included I would also like to keep the main effects in the model. Another example is a
2008 Mar 18
1
glm poisson, method='ML' (PR#10985)
Full_Name: saraux Version: 2.6.1 OS: Windows vista Submission from: (NULL) (193.157.180.37) I would like to compute a glm with a distribution of poisson, using a maximum of likelihood method. But it seems not to work with a distribution of poisson. The same code with another distrubution (binomial for example) works. Here is the command I typed:
2013 Feb 15
2
Making the plot window wider and using the predict function
Hello, I am new to R and have a couple of questions. My data set contains the variables "Bwt" and "Hwt", which are bodyweight and heartweight, respectively, of a group of cats. With the following code, I am making two plots, both to be viewed in the same plot window in R: library(MASS) maleData <- subset(cats, Sex == "M") linreg0 <- lm(maleData$Hwt ~
2011 Jun 16
0
Hauck-Donner
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 On 06/16/2011 01:47 PM, Rob James wrote: > Ben, > > Thanks for this. Very helpful and clearly others have tripped over the > same problem > I would have supposed that the solution was to ask lrm (or glm) to use > LR rather than Wald, but I don't see syntax to achieve this. Typically drop1 or dropterm (MASS package) will drop
2010 Sep 07
1
how to combine several subsets?
I simply put, > NEVER=subset(infants$bwt,ISNO1) > UNTILPREGNANT=subset(infants$bwt, ISNO2) > ONCENOTNOW=subset(infants$bwt, ISNO3) and I wanna combine those three. I do it like ISNO=NEVER&UNTILPREGNANT&ONCENOTNOW and R tells me 1: In NEVER & UNTILPREGNANT : longer object length is not a multiple of shorter object length 2: In NEVER & UNTILPREGNANT & ONCENOTNOW
2010 Nov 07
1
An example for predab.resample in r
Hi; I want to use bootstrap .632 with predab.resample, but the description is not clear for me. Can any body give me an example please. Thanks; Azad. [[alternative HTML version deleted]]
2013 Jul 11
0
[R-pkgs] Major Update to rms package
The rms ("Regression Modeling Strategies") package has undergone a massive update. The entire list of updates is at the bottom of this note. CRAN has the update for linux and will soon have it for Windows and Mac - check http://cran.r-project.org/web/packages/rms/ for availability. This rms update relies on a major update of the Hmisc package. The most user-visible changes are: