Displaying 20 results from an estimated 10000 matches similar to: "release memory"
2004 Jan 07
1
Questions on RandomForest
Hi, erveryone,
I show much thanks to Andy and Matthew on former questions. I now sample
only a small segment of a image can segment the image into several classes
by RandomForest successfully. Now I have some confusion on it:
1. What is the internal component classifier in RandomForest? Are they the
CART implemented in the rpart package?
2. I use training samples to predict new samples. But
2013 Feb 03
3
RandomForest, Party and Memory Management
Dear All,
For a data mining project, I am relying heavily on the RandomForest and
Party packages.
Due to the large size of the data set, I have often memory problems (in
particular with the Party package; RandomForest seems to use less memory).
I really have two questions at this point
1) Please see how I am using the Party and RandomForest packages. Any
comment is welcome and useful.
2012 Mar 23
1
Memory limits for MDSplot in randomForest package
Hello,
I am struggling to produce an MDS plot using the randomForest package
with a moderately large data set. My data set has one categorical
response variables, 7 predictor variables and just under 19000
observations. That means my proximity matrix is approximately 133000
by 133000 which is quite large. To train a random forest on this large
a dataset I have to use my institutions high
2006 Jul 27
2
memory problems when combining randomForests [Broadcast]
You need to give us more details, like how you call randomForest, versions
of the package and R itself, etc. Also, see if this helps you:
http://finzi.psych.upenn.edu/R/Rhelp02a/archive/32918.html
Andy
From: Eleni Rapsomaniki
>
> Dear all,
>
> I am trying to train a randomForest using all my control data
> (12,000 cases, ~ 20 explanatory variables, 2 classes).
> Because
2008 Jun 15
1
randomForest, 'No forest component...' error while calling Predict()
Dear R-users,
While making a prediction using the randomForest function (package
randomForest) I'm getting the following error message:
"Error in predict.randomForest(model, newdata = CV) : No forest component
in the object"
Here's my complete code. For reproducing this task, please find my 2 data
sets attached ( http://www.nabble.com/file/p17855119/data.rar data.rar ).
2023 Mar 19
1
ver el código de randomForest
Buenos días:
Otra opción es escribir directamente el nombre de la función en la
consola de R:
> randomForest
function (x, ...)
UseMethod("randomForest")
En este caso, la función randomForest() llama a UseMethod() para
seleccionar el método adecuado.
Podemos ver los métodos para randomForest con la función methods():
> methods(randomForest)
[1] randomForest.default*
2006 Jul 26
3
memory problems when combining randomForests
Dear all,
I am trying to train a randomForest using all my control data (12,000 cases, ~
20 explanatory variables, 2 classes). Because of memory constraints, I have
split my data into 7 subsets and trained a randomForest for each, hoping that
using combine() afterwards would solve the memory issue. Unfortunately,
combine() still runs out of memory. Is there anything else I can do? (I am not
using
2006 Apr 18
2
installation of package "randomForest" failed
Hello
I'd like to try out some functions in the package randomForest. Therefore,
I did install this package. However, it is not possible to load the
library, although I have R-Version 2.1.1 (i.e. later than 2.0.0). The
commands I used and the Answers/Error from R is as follows:
>
install.packages("C://Programme//R//rw2011//library//randomForest_4.5-16.zip",
2010 May 10
2
Installing randomForest on Ubuntu Errors
Hello,
I've tried to install randomForest on a Ubuntu 8.04 Hardy Heron system.
I've repeatedly rec'd the error:
> install.packages("randomForest", dependencies = TRUE)
ERROR: compiliation failed for package 'randomForest'
** Removing '/home/admuser/R/i486-pc-linux-gnu-library/2.6/randomForest'
The downloaded packages are in
2007 Apr 29
1
randomForest gives different results for formula call v. x, y methods. Why?
Just out of curiosity, I took the default "iris" example in the RF
helpfile...
but seeing the admonition against using the formula interface for large data
sets, I wanted to play around a bit to see how the various options affected
the output. Found something interesting I couldn't find documentation for...
Just like the example...
> set.seed(12) # to be sure I have
2013 Feb 14
1
party::cforest - predict?
What is the function call interface for predict in the package party for
cforest? I am looking at the documentation (the vignette) and ?cforest and
from the examples I see that one can call the function predict on a cforest
classifier. The method predict seems to be a method of the class
RandomForest objects of which are returned by cforest.
---------------------------
> cf.model =
2012 Apr 10
1
Help predicting random forest-like data
Hi,
I have been using some code for multivariate random forests. The output
from this code is a list object with all the same values as from
randomForest, but the model object is, of course, not of the class
randomForest. So, I was hoping to modify the code for predict.randomForest
to work for predicting the multivariate model to new data. This is my
first attempt at modifying code from a
2005 Jan 06
1
different result from the same errorest() in library( ipred)
Dear all,
Does anybody can explain this: different results got when all the same parameters are used in the errorest() in library ipred, as the following?
errorest(Species ~ ., data=iris, model=randomForest, estimator = "cv", est.para=control.errorest(k=3), mtry=2)$err
[1] 0.03333333
> errorest(Species ~ ., data=iris, model=randomForest, estimator = "cv",
2011 Sep 07
1
randomForest memory footprint
Hello, I am attempting to train a random forest model using the
randomForest package on 500,000 rows and 8 columns (7 predictors, 1
response). The data set is the first block of data from the UCI
Machine Learning Repo dataset "Record Linkage Comparison Patterns"
with the slight modification that I dropped two columns with lots of
NA's and I used knn imputation to fill in other gaps.
2008 Jul 22
2
randomForest Tutorial
I am new to R and I'd like to use the randomForest package for my thesis
(identifying important variables for more detailed analysis with other
software). I have found extremely well written and helpful information on
the usage of R.
Unfortunately it seems to be very difficult to find similarly detailed
tutorials for randomForest, and I just can't get it work with the
information on
2004 Mar 31
3
help with the usage of "randomForest"
Dear all,
Can anybody give me some hint on the following error msg I got with using
randomForest?
I have two-class classification problem. The data file "sample" is:
----------------------------------------------------------
udomain.edu udomain.hcs hpclass
1 1.0000 1 not
2 NA 2 not
3 NA 0.8 not
4 NA 0.2 hp
5 NA 0.9 hp
------------------------------------------------------------
The
2009 Jun 11
1
gfortran command not found?
Hello, I have openSUSE 11.1
Trying to install randomForest
as SU after invoking R install.packages("randomForest")
and I get this
* Installing *source* package ‘randomForest’ ...
** libs
gcc -std=gnu99 -I/usr/lib/R/include -I/usr/local/include -fpic -O2 -c
classTree.c -o classTree.o
gcc -std=gnu99 -I/usr/lib/R/include -I/usr/local/include -fpic -O2 -c
regTree.c -o
2007 Oct 20
1
path to libgfortran 'hardcoded' in R?
I am using R-2.6.0 on FreeBSD 8.0-CURRENT (i386). In the last days I had
problems when building packages SparseM, lme4 and randomForest.
The below message shows for randomForest, that 'libgfortran' was not
found. The same error appeared with SparseM and lme4.
---------------------------------
R CMD INSTALL randomForest_4.5-19.tar.gz
* Installing to library
2008 Oct 14
2
can't R CMD INSTALL on WinXP
Dear All,
I recently got a laptop upgrade, and had to re-install the tools I used
for building R packages on Windows (XP SP2). I'm running into a strange
problem that I can't resolve. Can anyone shed on light? This is with
R-2.7.2 patched 2008-09-20 r46576, Rtools.zip downloaded a couple of
weeks ago, and MikTeX 2.7. The output below was from a cygwin shell
(PATH modified
2011 Jan 20
1
randomForest: too many elements specified?
I getting "Error in matrix(0, n, n) : too many elements specified"
while building randomForest model, which looks like memory allocation
error.
Software versions are: randomForest 4.5-25, R version 2.7.1
Dataset is big (~90K rows, ~200 columns), but this is on a big machine (
~120G RAM)
and I call randomForest like this: randomForest(x,y)
i.e. in supervised mode and not requesting