Displaying 20 results from an estimated 10000 matches similar to: "GAM plots"
2011 Feb 16
1
retrieving partial residuals of gam fit (mgcv)
Dear list,
does anybody know whether there is a way to easily retrieve the so called "partial residuals" of a gam fit with package mgcv? The partial residuals are the residuals you would get if you would "leave out" a particular predictor and are the dots in the plots created by
plot(gam.object,residuals=TRUE)
residuals.gam() gives me whole model residuals and
2007 Jun 22
1
two basic question regarding model selection in GAM
Qusetion #1
*********
Model selection in GAM can be done by using:
1. step.gam {gam} : A directional stepwise search
2. gam {mgcv} : Smoothness estimation using GCV or UBRE/AIC criterion
Suppose my model starts with a additive model (linear part + spline part).
Using gam() {mgcv} i got estimated degrees of freedom(edf) for the smoothing
splines. Now I want to use the functional form of my model
2010 May 13
1
GAM, GAMM and numerical integration, help please
I am trying to apply methods used by Chaloupka & Limpus (1997) (
http://www.int-res.com/articles/meps/146/m146p001.pdf) to my own turtle
growth data.
I am having trouble with two things...
1) After the GAM is fit, the residuals are skewed.
>m1 <- gam(growth~s(mean.size,
bs="cr")+s(year,bs="cr",k=7)+s(cohort,bs="cr")+s(age,bs="cr"),
data=grow,
2008 Jun 11
1
mgcv::gam error message for predict.gam
Sometimes, for specific models, I get this error from predict.gam in library
mgcv:
Error in complete.cases(object) : negative length vectors are not allowed
Here's an example:
model.calibrate <-
gam(meansalesw ~ s(tscore,bs="cs",k=4),
data=toplot,
weights=weight,
gam.method="perf.magic")
> test <- predict(model.calibrate,newdata)
Error in
2008 Nov 14
2
GAM and Poisson distribution
Hi -I'm running a GAM with 7 explanatory variables with a Poisson error
structure. All of the variables are continuous so I'm getting error
messages in R.
cod.fall.full.gam.model<-gam(Kept.CPUE~s(HOUR)+s(LAT_dec)+s(LONG_dec)+s(meantemp_C)+s(meandepth_fa)+s(change_depth)+s(seds),
data=cod.fall.version2,family=poisson)
In dpois(y, mu, log = TRUE) ... : non-integer x = 5.325517
2007 Dec 13
1
Two repeated warnings when runing gam(mgcv) to analyze my dataset?
Dear all,
I run the GAMs (generalized additive models) in gam(mgcv) using the
following codes.
m.gam
<-gam(mark~s(x)+s(y)+s(lstday2004)+s(ndvi2004)+s(slope)+s(elevation)+disbinary,family=binomial(logit),data=point)
And two repeated warnings appeared.
Warnings$B!'(B
1: In gam.fit(G, family = G$family, control = control, gamma = gamma, ... :
Algorithm did not converge
2: In gam.fit(G,
2010 Aug 05
1
plot points using vis.gam
Hello,
I'm trying to illustrate the relationships between various trait and
environment data gathered from a number of sites. I've created a GAM to do
this: gam1=gam(trait~s(env1)+s(env2)+te(env1,env2)) and I know how to create
a 3D plot using vis.gam. I want to be able to show points on the 3D plot
indicating the sites that the data came from. I can do this on a 2D plot
when there is one
2013 Jul 08
1
error in "predict.gam" used with "bam"
Hello everyone.
I am doing a logistic gam (package mgcv) on a pretty large dataframe
(130.000 cases with 100 variables).
Because of that, the gam is fitted on a random subset of 10000. Now when I
want to predict the values for the rest of the data, I get the following
error:
> gam.basis_alleakti.1.pr=predict(gam.basis_alleakti.1,
+
2011 Apr 12
1
Model checking for gam (mgcv) result
Dear list,
i'm checking the residuals plots of a gam model after a processus of model
selection. I found the "best" model, all my terms are significant, the
r-square and the deviance explained are good, but I have strange residuals
plots:
http://dl.dropbox.com/u/1169100/gam.check.png
http://dl.dropbox.com/u/1169100/residuals_vs_fitted.png
What does explains the "curve"
2013 Mar 23
1
Time trends with GAM
Hi all,
I am using GAM to model time trends in a logistic regression. Yet I would
like to extract the the fitted spline from it to add it to another model,
that cannot be fitted in GAM or GAMM.
Thus I have 2 questions:
1) How can I fit a smoother over time so that I force one knot to be at a
particular location while letting the model to find the other knots?
2) how can I extract the matrix
2007 Apr 16
1
Does the smooth terms in GAM have a functional form?
Hi, all,
Does anyone know how to get the functional form of the smooth terms in GAM? eg. I fit y=a+b*s(x) where s is the smooth function.
After fitting this model with GAM in R, I want to know the form of the s(x). Any suggestion is appreciated.
Thanks,
Jin
---------------------------------
Ahhh...imagining that irresistible "new car" smell?
2008 May 06
1
mgcv::gam shrinkage of smooths
In Dr. Wood's book on GAM, he suggests in section 4.1.6 that it might be
useful to shrink a single smooth by adding S=S+epsilon*I to the penalty
matrix S. The context was the need to be able to shrink the term to zero if
appropriate. I'd like to do this in order to shrink the coefficients towards
zero (irrespective of the penalty for "wiggliness") - but not necessarily
all the
2007 Nov 25
1
GAM with constraints
Hi,
I am trying to build GAM with linear constraints, for a general link
function, not only identity. If I understand it correctly, the function
pcls() can solve the problem, if the smoothness penalties are given.
What I need is to incorporate the constraints before calculating the
penalties. Can this be done in R?
Any help would be greately appreciated.
--
View this message in context:
2012 Aug 14
1
Random effects in gam (mgcv 1.7-19)
Hi,
I am using the gam function in the mgcv package, I have random effects in
my model (bs="re") this has worked fine, but after I updated the mgcv
package to version 1.7-19 I recive an error message when I run the model.
>
fit1<-gam(IV~s(RUTE,bs="re")+s(T13)+s(H40)+factor(AAR)+s(V3)+s(G1)+s(H1)+s(V1)+factor(LEDD),data=data5,method="ML")
> summary.gam(fit1)
2010 Dec 06
1
Help with GAM (mgcv)
Please help! Im trying to run a GAM:
model3=gam(data2$Symptoms~as.factor(data2$txerad)+s(data2$maritalStatus),family=binomial,data=data2)
But keep getting this error:
Error in dl[[i]] : subscript out of bounds
Can someone please tell me what this error is?
Thanks
--
View this message in context: http://r.789695.n4.nabble.com/Help-with-GAM-mgcv-tp3074165p3074165.html
Sent from the R help
2007 Dec 13
1
Probelms on using gam(mgcv)
Dear all,
Following the help from gam(mgcv) help page, i tried to analyze my
dataset with all the default arguments. Unfortunately, it can't be run
successfully. I list the errors below.
#m.gam<-gam(mark~s(x,y)+s(lstday2004)+s(slope)+s(ndvi2004)+s(elevation)+s(disbinary),family=binomial(logit),data=point)
2012 Feb 03
1
GAM (mgcv) warning: matrix not positive definite
Dear list,
I fitted the same GAM model using directly the function gam(mgcv) ... then
as a parameter of another function that capture the warnings messages (see
below).
In the first case, there is no warning message printed, but in the last
one, the function find two warning messages stating "matrix not positive
definite"
So my question is: Do I have to worry about those warnings and
2007 Aug 08
1
prediction using gam
I am fitting a two dimensional smoother in gam, say junk =
gam(y~s(x1,x2)), to a response variable y that is always positive and
pretty well behaved, both x1 and x2 are contained within [0,1].
I then create a new dataset for prediction with values of (x1,x2) within
the range of the original data.
predict(junk,newdata,type="response")
My predicted values are a bit strange
2008 Jan 08
3
GAM, GLM, Logit, infinite or missing values in 'x'
Hi,
I'm running gam (mgcv version 1.3-29) and glm (logit) (stats R 2.61) on
the same models/data, and I got error messages for the gam() model and
warnings for the glm() model.
R-help suggested that the glm() warning messages are due to the model
perfectly predicting binary output. Perhaps the model overfits the data? I
inspected my data and it was not immediately obvious to me (though I
2007 Oct 05
2
question about predict.gam
I'm fitting a Poisson gam model, say
model<-gam(a65tm~as.factor(day.week
)+as.factor(week)+offset(log(pop65))+s(time,k=10,bs="cr",fx=FALSE,by=NA,m=1),sp=c(
0.001),data=dati1,family=poisson)
Currently I've difficulties in obtaining right predictions by using
gam.predict function with MGCV package in R version 2.2.1 (see below my
syntax).