similar to: output (p-values) of "fastbw" in Design package

Displaying 20 results from an estimated 20000 matches similar to: "output (p-values) of "fastbw" in Design package"

2011 Aug 19
0
rms:fastbw variable selection differences with AIC .vs. p value methods
I want to employ a parsimonious model to draw nomograms, as the full model is too complex to draw nomograms readily (several interactions of continuous variables). However, one interesting variable stays or leaves based on whether I choose "p value" or "AIC" options to fastbw(). My question boils down to this: Is there a theoretical reason to prefer one over another?
2011 Apr 28
1
Nomograms from rms' fastbw output objects
There is both a technical and a theoretical element to my question... Should I be able to use the outputs which arise from the fastbw function as inputs to nomogram(). I seem to be failing at this, -- I obtain a subscript out of range error. That I can't do this may speak to technical failings, but I suspect it is because Prof Harrell thinks/knows it injudicious. However, I can't
2010 Feb 12
1
validate (rms package) using step instead of fastbw
Dear All, For logistic regression models: is it possible to use validate (rms package) to compute bias-corrected AUC, but have variable selection with AIC use step (or stepAIC, from MASS), instead of fastbw? More details: I've been using the validate function (in the rms package, by Frank Harrell) to obtain, among other things, bootstrap bias-corrected estimates of the AUC, when variable
2005 Mar 30
1
fastbw question
Hello I am running R 2.0.1 on Windows, I am attempting to use Frank Harrell's 'fastbw' function (from the Design library), but I get an error that the fit was not created with a Design library fitting function; yet when I go to the help for fastbw (and also look in Frank's book Regression Modeling Strategies) it appears that fastbw should work with a model created with lm.....
2008 Feb 20
1
fastbw() in Design works for continuous variable?
Hi, it seems that the fastbw() in the Design package only works with variable of class "factor" according to the help page if I understand correctly. Is there any R function/package that do stepwise variable selection for a Cox model with continuous independent variables? Thank you John ____________________________________________________________________________________ Looking
2012 Jul 20
0
Forced inclusion of varaibles in validate command as well as step
Dear prof. Harrell, I'm not able to use the force option with fastbw, here an example of the error I've got (dataset stagec rpart package): > fitstc <- cph(Surv(stagec$pgtime,stagec$pgstat) ~ age + eet + g2 + grade + gleason + ploidy, data=stagec) > fbwstc <- fastbw(fitstc,rule="aic",type="individual") > fbwstc Deleted Chi-Sq d.f. P Residual d.f.
2003 Jan 07
1
help interpreting output?
Dear R experts, I'm hoping someone can help me to interpret the results of building gam's with mgcv in R. Below are summaries of two gam's based on the same dataset. The first gam (named "gam.mod") has six predictor variables. The second gam (named "gam.mod2") is exactly the same except it is missing one of the predictor variables. What is confusing me is
2005 Sep 23
1
Smooth terms significance in GAM models
hi, i'm using gam() function from package mgcv with default option (edf estimated by GCV). >G=gam(y ~ s(x0, k = 5) + s(x1) + s(x2, k = 3)) >SG=summary(G) Formula: y ~ +s(x0, k = 5) + s(x1) + s(x2, k = 3) Parametric coefficients: Estimate std. err. t ratio Pr(>|t|) (Intercept) 3.462e+07 1.965e+05 176.2 < 2.22e-16 Approximate significance of smooth
2011 May 15
5
Question on approximations of full logistic regression model
Hi, I am trying to construct a logistic regression model from my data (104 patients and 25 events). I build a full model consisting of five predictors with the use of penalization by rms package (lrm, pentrace etc) because of events per variable issue. Then, I tried to approximate the full model by step-down technique predicting L from all of the componet variables using ordinary least squares
2005 Jun 26
2
chisq.test using amalgamation automatically (possible ?!?)
Dear List, If any of observed and/or expected data has less than 5 frequencies, then chisq.test (Pearson's Chi-squared Test for Count Data from package:stats) gives warning messages. For example, x<-c(10, 14, 10, 11, 11, 7, 8, 4, 1, 4, 4, 2, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) y<-c(9.13112391745095, 13.1626482033341, 12.6623267638188, 11.0130706413029, 9.16415925139016,
2007 Feb 13
1
lme4/lmer: P-Values from mcmc samples or chi2-tests?
Dear R users, I have now tried out several options of obtaining p-values for (quasi)poisson lmer models, including Markov-chain Monte Carlo sampling and single-term deletions with subsequent chi-square tests (although I am aware that the latter may be problematic). However, I encountered several problems that can be classified as (1) the quasipoisson lmer model does not give p-values when
2003 Sep 03
3
plotting a distribution curves
Hi, is there a way to plot distribution curves (say normal or chi sq etc) from within R? For example I looked up the *chisq family of functions but I'm not sure as to how I would use them to generate a plot of the chi sq distribution (for arbitrary d.o.f). Thanks, ------------------------------------------------------------------- Rajarshi Guha <rajarshi at presidency.com>
2010 Mar 31
2
interpretation of p values for highly correlated logistic analysis
Dear list, I want to perform a logistic regression analysis with multiple categorical predictors (i.e., a logit) on some data where there is a very definite relationship between one predicator and the response/independent variable. The problem I have is that in such a case the p value goes very high (while I as a naive newbie would expect it to crash towards 0). I'll illustrate my problem
2013 Sep 12
1
Getting "Approximate Estimates after Deleting Factors" out from fastbw()
Hello! I am using relatively simple linear model. By applying fastbw() on ols() results from rms package I would like to get subtable "Approximate Estimates after Deleting Factors". However, it seems this is not possible. Am I right? I can only get coefficients for variables kept in the model (for example: x$coefficients), but not S.E., Wald's Z and P? Is there any easy way to
2010 Aug 17
2
plotting functions of chi square
Hi! This is going to be a real newbie question, but I can't figure it out. I'm trying to plot densities of various functions of chi-square. A simple chi-square plot I can do with dchisq(). But e.g. chi.sq/degrees of freedom I only know how to do using density(rchisq()/df). For example: plot(1, type="n", xlab="", ylab="", xlim=c(0,2), ylim=c(0,7)) for (i
2005 Jul 12
1
Design: predict.lrm does not recognise lrm.fit object
Hello I'm using logistic regression from the Design library (lrm), then fastbw to undertake a backward selection and create a reduced model, before trying to make predictions against an independent set of data using predict.lrm with the reduced model. I wouldn't normally use this method, but I'm contrasting the results with an AIC/MMI approach. The script contains: # Determine full
2005 Oct 30
4
Yates' correction for continuity in chisq.test (PR#8265)
Full_Name: foo ba baz Version: R2.2.0 OS: Mac OS X (10.4) Submission from: (NULL) (219.66.32.183) chisq.test(matrix(c(9,10,9,11),2,2)) Chi-square value must be 0, and, P value must be 0 R does over correction when | a d - b c | < n / 2 &#65292;chi-sq must be 0
2006 Mar 31
1
add1() and glm
Hello, I have a question about the add1() function and quasilikelihoods for GLMs. I am fitting quasi-Poisson models using glm(, family = quasipoisson). Technically, with the quasilikelihood approach the deviance does not have the interpretation as a likelihood-based measure of sample information. Functions such as stepAIC() cannot be used. The function add1() returns the change in the scaled
2012 May 08
1
Automating R for Hypothesis Testing
R Users- I have been trying to automate a manual code that I have developed for calling in a .csv file, isolating certain rows and columns that correspond to specified months: something to the effect i=name.csv N=length(i$month) iphos1=0 iphos2=0 isphos3=0 for i=1,N if month=1 iphos1=iphos+1 iphos1(iphos1)=i an so on to call out the months into there own arrays (unless there is a way I
2005 Sep 20
1
Estimate predictor contribution in GAM models
hi, i'm using gam() function from package mgcv. if G is my gam object, then >SG=summary(G) Formula: y ~ +s(x0, k = 5) + s(x1) + s(x2, k = 3) Parametric coefficients: Estimate std. err. t ratio Pr(>|t|) (Intercept) 3.462e+07 1.965e+05 176.2 < 2.22e-16 Approximate significance of smooth terms: edf chi.sq p-value s(x0)