similar to: Warning message as a result of logistic regression performed

Displaying 20 results from an estimated 11000 matches similar to: "Warning message as a result of logistic regression performed"

2006 Aug 31
3
what's wrong with my simulation programs on logistic regression
Dear friends, I'm doing a simulation on logistic regression model, but the programs can't work well,please help me to correct it and give some suggestions. My programs: data<-matrix(rnorm(400),ncol=8) #sample size is 50 data<-data.frame(data) names(data)<-c(paste("x",1:8,sep="")) #8 independent variables,x1-x8; #logistic regression model is
2006 Jan 31
1
warnings in glm (logistic regression)
Hello R users I ran more than 100 logistic regression analyses. Some of the analyses gave me this kind warning below. ########################################################### Warning messages: 1: algorithm did not converge in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, ... 2: fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y,
2005 Jun 16
1
logistic regression - using polys and products of features
Hi I can get all my features by doing this: > logistic.model = glm(similarity ~ ., family=binomial, data = cData[3001:3800,]) I can get the product of all my features by this: logistic.model = glm(similarity ~ . ^ 2, family=binomial, data = cData[3001:3800,]) I don't seem to be able to get polys by doing this: logistic.model = glm(similarity ~ poly(.,2), family=binomial, data
2007 Dec 29
1
COMPAR.GEE error with logistic model
Hello, I am trying to run the APE program COMPAR.GEE with a model containing a categorical response variable and a mixture of continuous and categorical independent variables. The model runs when I have categorical (binary) response and two continuous independent variables (VAR1 and VAR2), but when I include a categorical (binary) independent variable (VAR3), I receive the following output with
2005 Apr 13
1
logistic regression weights problem
Hi All, I have a problem with weighted logistic regression. I have a number of SNPs and a case/control scenario, but not all genotypes are as "guaranteed" as others, so I am using weights to downsample the importance of individuals whose genotype has been heavily "inferred". My data is quite big, but with a dummy example: > status <- c(1,1,1,0,0) > SNPs <-
2005 Jul 02
2
Is it possible to use glm() with 30 observations?
I have a very simple problem. When using glm to fit binary logistic regression model, sometimes I receive the following warning: Warning messages: 1: fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, 2: fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start,
2008 May 12
4
Several questions about MCMClogit
Hello everybody, I'm new to MCMClogit. I'm trying to use MCMClogit to fit a logistic regression model but I got some warnings I can't understand. My input data X is 32(tissue sample)*20(genes) matrix, each element in this matrix corresponds to the expression value of one particular gene in one of 32 samples. And the Y presents the corresponding classes (0-non cancer, 1-cancer)
2009 Mar 26
1
Extreme AIC in glm(), perfect separation, svm() tuning
Dear List, With regard to the question I previously raised, here is the result I obtained right now, brglm() does help, but there are two situations: 1) Classifiers with extremely high AIC (over 200), no perfect separation, coefficients converge. in this case, using brglm() does help! It stabilize the AIC, and the classification power is better. Code and output: (need to install package:
2006 Feb 17
2
Something changed and glm(..., family=binomial) doesn't work now
I ran logistic regression models last week using glm (...,family=binomial) and got a set of results. Since then I have loaded the Epi package for ROC analysis. Now when I run those same models I get completely different results, with most being: Warning message: fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
2003 Nov 06
1
for help about R--probit
Not real data. It was gererated randomly. The original codes are the following: par(mfrow=c(2,1)) n <- 500 ######################### #DATA GENERATING PROCESS# ######################### x1 <- rnorm(n,0,1) x2 <- rchisq(n,df=3,ncp=0)-3 sigma <- 1 u1 <- rnorm(n,0,sigma) ylatent1 <-x1+x2+u1 y1 <- (ylatent1 >=0) # create the binary indicator ####################### #THE
2009 Jun 22
1
How to make try to catch warnings in logistic glm
Dear list, >From an earlier post I got the impression that one could promote warnings from a glm to errors (presumably by putting options(warn=1)?), then try() would flag them as errors. I?ve spent half the day trying to do this, but no luck. Do you have an explicit solution? My problems is that I am trying to figure out during what conditions one may find 5 significant parameters in a
2009 Mar 27
1
deleting/removing previous warning message in loop
Hello R Users, I am having difficulty deleting the last warning message in a loop so that the only warning that is produced is that from the most recent line of code. I have tried options(warn=1), rm(last.warning), and resetting the last.warning using something like: > warning("Resetting warning message") This problem has been addressed in a previous listserve string,
2005 Jan 28
3
GLM fitting
DeaR R-useRs, I'm trying to fit a logist model with these data: > dati y x 1 1 37 2 1 35 3 1 33 4 1 40 5 1 45 6 1 41 7 1 42 8 0 20 9 0 21 10 0 25 11 0 27 12 0 29 13 0 18 I use glm(), having this output: > g<-glm(y~x,family=binomial,data=dati) Warning messages: 1: Algorithm did not converge in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart =
2010 Mar 08
1
error_hier.part
Hi everyone, BEGINNER question: I get the error below when running hier.part. Probably i´m doing something wrong. Error in glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, : object 'fit' not found In addition: Warning messages: 1: In glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, : no observations informative at iteration 1
2005 Aug 05
1
question regarding logit regression using glm
I got the following warning messages when I did a binomial logit regression using glm(): Warning messages: 1: Algorithm did not converge in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, 2: fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, Can some one share your thoughts on how to
2010 Apr 26
2
Unexpected warnings from summary() on mcmc.list objects
I am trying to get summary statistics from WinBUGS/JAGS output in the form of mcmc.list objects, using the summary() function. However, I get odd warning messages: Warning messages: 1: In glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, : algorithm did not converge 2: In glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, : algorithm did
2006 Feb 01
1
glm-logistic on discrete-time methods with individual and aggregated data
Dear R-Users, without going into details I tried to prepare a simple example to show you where I would need help. In particular I prepare two examples-template for a study I'm conduction on discrete-time methods for survival analysis. Each of this example has two datasets which are basically equal, with the exception that in the former one has individual data and in the latter one aggregated
2006 Jul 21
2
glm cannot find valid starting values
glm(S ~ -1 + Mdif, family=quasipoisson(link=identity), start=strt, sdat) gives error: > Error in glm.fit(x = X, y = Y, weights = weights, start = start, etastart > = > etastart, : > cannot find valid starting values: please specify some strt is set to be the coefficient for a similar fit glm(S ~ -1 + I(Mdif + 1),... i.e. (Mdif + 1) is a vector similar to Mdif. The error
2006 Jan 15
1
problems with glm
Dear R users, I am having some problems with glm. The first is an error message "subscript out of bounds". The second is the fact that reasonable starting values are not accepted by the function. To be more specific, here is an example: > success <- c(13,12,11,14,14,11,13,11,12) > failure <- c(0,0,0,0,0,0,0,2,2) > predictor <- c(0,80*5^(0:7)) >
2008 Dec 15
5
OT: (quasi-?) separation in a logistic GLM
Dear List, Apologies for this off-topic post but it is R-related in the sense that I am trying to understand what R is telling me with the data to hand. ROC curves have recently been used to determine a dissimilarity threshold for identifying whether two samples are from the same "type" or not. Given the bashing that ROC curves get whenever anyone asks about them on this list (and