similar to: Full likelihood from survreg

Displaying 20 results from an estimated 4000 matches similar to: "Full likelihood from survreg"

2009 Mar 09
2
understanding the output from survival analysis
Why do I get different sign of the coefficients of covariates when I run the semi-parametric proportional hazard model (coxph) compared to the parametric proportional hazard model (survreg)? Anyone with experience in extracting information form survreg to make predictions are free to contact me. Cheers, Ullrika [[alternative HTML version deleted]]
2008 Apr 17
1
survreg() with frailty
Dear R-users, I have noticed small discrepencies in the reported estimate of the variance of the frailty by the print method for survreg() and the 'theta' component included in the object fit: # Examples in R-2.6.2 for Windows library(survival) # version 2.34-1 (2008-03-31) # discrepancy fit1 <- survreg(Surv(time, status) ~ rx + frailty(litter), rats) fit1 fit1$history[[1]]$theta
2009 Jun 07
1
Survreg function for loglogistic hazard estimation
I am trying to use R to do loglogistic hazard estimation. My plan is to generate a loglogistic hazard sample data and then use survreg to estimate it. If everything is correct, survreg should return the parameters I have used to generate the sample data. I have written the following code to do a time invariant hazard estimation. The output of summary(modloglog) shows the factor loading of
2010 Nov 25
2
aftreg vs survreg loglogistic aft model (different intercept term)
Hi, I'm estimating a loglogistic aft (accelerated failure time) model, just a simple plain vanilla one (without time dependent covariates), I'm comparing the results that I obtain between aftreg (eha package) and survreg(surv package). If I don't use any covariate the results are identical , if I add covariates all the coefficients are the same until a precision of 10^4 or 10^-5 except
2006 Feb 28
1
ex-Gaussian survival distribution
Dear R-Helpers, I am hoping to perform survival analyses using the "ex-Gaussian" distribution. I understand that the ex-Gaussian is a convolution of exponential and Gaussian distributions for survival data. I checked the "survreg.distributions" help and saw that it is possible to mix pre-defined distributions. Am I correct to think that the following code makes the
2008 Apr 08
1
Weibull maximum likelihood estimates for censored data
Hello! I have a matrix with data and a column indicating whether it is censored or not. Is there a way to apply weibull and exponential maximum likelihood estimation directly on the censored data, like in the paper: Backtesting Value-at-Risk: A Duration-Based Approach, P Chrisoffersen and D Pelletier (October 2003) page 8? The problem is that if I type out the code as below the likelihood
2008 Jan 23
2
Parametric survival models with left truncated, right censored data
Dear All, I would like to fit some parametric survival models using left truncated, right censored data in R. However I am having problems finding a function to fit parametric survival models which can handle left truncated data. I have tested both the survreg function in package survival: fit1 <- survreg(Surv(start, stop, status) ~ X + Y + Z, data=data1) and the psm function in package
2010 Mar 19
0
Survreg function for loglogistic hazard estimation
I a trying to use survreg to fit a Weibull distribution. From the last few messages I understand how to interpret the parameters. However, how do I get the covariance of lambda and alpha? Is there a predict command for that? Thanks -- View this message in context: http://n4.nabble.com/Survreg-function-for-loglogistic-hazard-estimation-tp893503p1604918.html Sent from the R help mailing list
2008 Oct 31
1
loglogistic cumulative distribution used by survreg
Dear all, What is the cumulative distribution (with parameterization) used within survreg with respect to the log-logistic distribution? That is, how are the parameters linked to the survivor function? Best regards, Mario [[alternative HTML version deleted]]
2003 Apr 20
1
survreg penalized likelihood?
What objective function is maximized by survreg with the default Weibull model? I'm getting finite parameters in a case that has the likelihood maximzed at Infinite, so it can't be a simple maximum likelihood. Consider the following: ############################# > set.seed(3) > Stress <- rep(1:3, each=3) > ch.life <- exp(9-3*Stress) > simLife <- rexp(9,
2010 Dec 10
1
survreg vs. aftreg (eha) - the relationship between fitted coefficients?
Dear R-users, I need to use the aftreg function in package 'eha' to estimate failure times for left truncated survival data. Apparently, survreg still cannot fit such models. Both functions should be fitting the accelerated failure time (Weibull) model. However, as G?ran Brostr?m points out in the help file for aftreg, the parameterisation is different giving rise to different
2007 Jun 27
0
error message survreg.fit
Dear All, I am doing a parametric survival analysis with: fit <- survreg(Surv(xyz$start, xyz$stop, xyz$event, type="interval") ~ 1, dist='loglogistic') At this point I do not want to look into covariates, hence the '~1' as model formulation. As event types I have exact, interval, and right censored lifetime data. Everything works fine. For reasons that are
2017 Oct 16
1
survival analysis - predict function
Hi I'm trying to predict the values for a survreg object called loglogistic_na. Here is the definition of loglogistic_na and following that the syntax used for the predict function. But upon execution I don't get any output. Not sure what I'm doing wrong: loglogistic_na <- survreg(Surv(time_na,event_na) ~ t_na, dist="loglogistic") summary(loglogistic_na)
2011 Sep 20
0
Using method = "aic" with pspline & survreg (survival library)
Hi everybody. I'm trying to fit a weibull survival model with a spline basis for the predictor, using the survival library. I've noticed that it doesn't seem to be possible to use the aic method to choose the degrees of freedom for the spline basis in a parametric regression (although it's fine with the cox model, or if the degrees of freedom are specified directly by the user),
2008 Jan 05
1
Likelihood ratio test for proportional odds logistic regression
Hi, I want to do a global likelihood ratio test for the proportional odds logistic regression model and am unsure how to go about it. I am using the polr() function in library(MASS). 1. Is the p-value from the likelihood ratio test obtained by anova(fit1,fit2), where fit1 is the polr model with only the intercept and fit2 is the full polr model (refer to example below)? So in the case of the
2005 May 03
2
comparing lm(), survreg( ... , dist="gaussian") and survreg( ... , dist="lognormal")
Dear R-Helpers: I have tried everything I can think of and hope not to appear too foolish when my error is pointed out to me. I have some real data (18 points) that look linear on a log-log plot so I used them for a comparison of lm() and survreg. There are no suspensions. survreg.df <- data.frame(Cycles=c(2009000, 577000, 145000, 376000, 37000, 979000, 17420000, 71065000, 46397000,
2009 Mar 08
2
survreg help in R
Hey all, I am trying to use the survreg function in R to estimate the mean and standard deviation to come up with the MLE of alpha and lambda for the weibull distribution. I am doing the following: times<-c(10,13,18,19,23,30,36,38,54,56,59,75,93,97,104,107,107,107) censor<-c(1,0,0,1,0,1,1,0,0,0,1,1,1,1,0,1,0,0) survreg(Surv(times,censor),dist='weibull') and I get the following
2008 Apr 25
3
Use of survreg.distributions
Dear R-user: I am using survreg(Surv()) for fitting a Tobit model of left-censored longitudinal data. For logarithmic transformation of y data, I am trying use survreg.distributions in the following way: tfit=survreg(Surv(y, y>=-5, type="left")~x + cluster(id), dist="gaussian", data=y.data, scale=0, weights=w) my.gaussian<-survreg.distributions$gaussian
2010 Nov 15
1
interpretation of coefficients in survreg AND obtaining the hazard function
1. The weibull is the only distribution that can be written in both a proportional hazazrds for and an accelerated failure time form. Survreg uses the latter. In an ACF model, we model the time to failure. Positive coefficients are good (longer time to death). In a PH model, we model the death rate. Positive coefficients are bad (higher death rate). You are not the first to be confused
2007 Nov 29
1
Survreg(), Surv() and interval-censored data
Can anybody give me a neat example of interval censored data analysis codes in R? Given that suvreg(Surv(c(1,1,NA,3),c(2,NA,2,3),type="interval2")~1) works why does survreg(Surv(data[,1],data[,2],type="interval2")~1) not work where data is : T.1 T.2 Status 1 0.0000000 0.62873036 1 2 0.0000000 2.07039068 1 3 0.0000000