similar to: help: what are the basis functions in {mgcv}: gam?

Displaying 20 results from an estimated 2000 matches similar to: "help: what are the basis functions in {mgcv}: gam?"

2008 Jun 11
1
mgcv::gam error message for predict.gam
Sometimes, for specific models, I get this error from predict.gam in library mgcv: Error in complete.cases(object) : negative length vectors are not allowed Here's an example: model.calibrate <- gam(meansalesw ~ s(tscore,bs="cs",k=4), data=toplot, weights=weight, gam.method="perf.magic") > test <- predict(model.calibrate,newdata) Error in
2007 Dec 13
1
Two repeated warnings when runing gam(mgcv) to analyze my dataset?
Dear all, I run the GAMs (generalized additive models) in gam(mgcv) using the following codes. m.gam <-gam(mark~s(x)+s(y)+s(lstday2004)+s(ndvi2004)+s(slope)+s(elevation)+disbinary,family=binomial(logit),data=point) And two repeated warnings appeared. Warnings$B!'(B 1: In gam.fit(G, family = G$family, control = control, gamma = gamma, ... : Algorithm did not converge 2: In gam.fit(G,
2012 Feb 03
1
GAM (mgcv) warning: matrix not positive definite
Dear list, I fitted the same GAM model using directly the function gam(mgcv) ... then as a parameter of another function that capture the warnings messages (see below). In the first case, there is no warning message printed, but in the last one, the function find two warning messages stating "matrix not positive definite" So my question is: Do I have to worry about those warnings and
2008 May 06
1
mgcv::gam shrinkage of smooths
In Dr. Wood's book on GAM, he suggests in section 4.1.6 that it might be useful to shrink a single smooth by adding S=S+epsilon*I to the penalty matrix S. The context was the need to be able to shrink the term to zero if appropriate. I'd like to do this in order to shrink the coefficients towards zero (irrespective of the penalty for "wiggliness") - but not necessarily all the
2011 Feb 16
1
retrieving partial residuals of gam fit (mgcv)
Dear list, does anybody know whether there is a way to easily retrieve the so called "partial residuals" of a gam fit with package mgcv? The partial residuals are the residuals you would get if you would "leave out" a particular predictor and are the dots in the plots created by plot(gam.object,residuals=TRUE) residuals.gam() gives me whole model residuals and
2012 Apr 03
1
A contour plot question - vis.gam () function in "mgcv"
Hi, Please see the attached contour plot (I am sorry about the big file). This was created using the vis.gam() function in "mgcv" package. However, my question is somewhat broader. In generating this figure, I first created the contours using vis.gam() and then I plotted the points. These point are plotted on top of the contours so that some of the contour lines are only partially
2007 Jun 25
1
gam function in the mgcv library
I would like to fit a logistic regression using a smothing spline, where the spline is a piecewise cubic polynomial. Is the knots option used to define the subintervals for each piece of the cubic spline? If yes and there are k knots, then why does the coefficients field in the returned object from gam only list k coefficients? Shouldn't there be 4k -4 coefficients? Sincerely, Bill
2012 Feb 13
3
mgcv: increasing basis dimension
hi Using a ts or tprs basis, I expected gcv to decrease when increasing the basis dimension, as I thought this would minimise gcv over a larger subspace. But gcv increased. Here's an example. thanks for any comments. greg #simulate some data set.seed(0) x1<-runif(500) x2<-rnorm(500) x3<-rpois(500,3) d<-runif(500) linp<--1+x1+0.5*x2+0.3*exp(-2*d)*sin(10*d)*x3
2012 Aug 14
1
Random effects in gam (mgcv 1.7-19)
Hi, I am using the gam function in the mgcv package, I have random effects in my model (bs="re") this has worked fine, but after I updated the mgcv package to version 1.7-19 I recive an error message when I run the model. > fit1<-gam(IV~s(RUTE,bs="re")+s(T13)+s(H40)+factor(AAR)+s(V3)+s(G1)+s(H1)+s(V1)+factor(LEDD),data=data5,method="ML") > summary.gam(fit1)
2004 Sep 27
2
passing formula arg to mgcv::gam
Hi, I have a function, callGam, that fits a gam model to a subset of a dataframe. The argument to callGam is a formula, the subset is determined inside the function itself. My na??ve approach generates and error, see below. I guess this is because 'idx' is loocked up in the environment of 'formula', but I am too ignorant about environments to be able to tell for sure. Could
2007 Dec 13
1
Probelms on using gam(mgcv)
Dear all, Following the help from gam(mgcv) help page, i tried to analyze my dataset with all the default arguments. Unfortunately, it can't be run successfully. I list the errors below. #m.gam<-gam(mark~s(x,y)+s(lstday2004)+s(slope)+s(ndvi2004)+s(elevation)+s(disbinary),family=binomial(logit),data=point)
2012 Jul 23
1
mgcv: Extract random effects from gam model
Hi everyone, I can't figure out how to extract by-factor random effect adjustments from a gam model (mgcv package). Example (from ?gam.vcomp): library(mgcv) set.seed(3) dat <- gamSim(1,n=400,dist="normal",scale=2) a <- factor(sample(1:10,400,replace=TRUE)) b <- factor(sample(1:7,400,replace=TRUE)) Xa <- model.matrix(~a-1) ## random main effects Xb <-
2012 Jul 30
2
mgcv 1.7-19, vis.gam(): "invalid 'z' limits'
Hi everyone, I ran a binomial GAM consisting of a tensor product of two continuous variables, a continuous parametric term and crossed random intercepts on a data set with 13,042 rows. When trying to plot the tensor product with vis.gam(), I get the following error message: Error in persp.default(m1, m2, z, col = col, zlim = c(min.z, max.z), xlab = view[1], : invalid 'z' limits In
2010 Sep 26
1
Basis functions of cubic regression spline in mgcv
I have a question about the basis functions of cubic regression spline in mgcv. Are there some ways I can get the exact forms of the basis functions and the penalty matrix that are used in mgcv? Thanks in advance! Yan [[alternative HTML version deleted]]
2011 Mar 28
2
mgcv gam predict problem
Hello I'm using function gam from package mgcv to fit splines. ?When I try to make a prediction slightly beyond the original 'x' range, I get this error: > A = runif(50,1,149) > B = sqrt(A) + rnorm(50) > range(A) [1] 3.289136 145.342961 > > > fit1 = gam(B ~ s(A, bs="ps"), outer.ok=TRUE) > predict(fit1, newdata=data.frame(A=149.9), outer.ok=TRUE) Error
2002 Jan 28
1
residuals in plot.gam (mgcv)
Is there a way to add residuals to plots produced by plot.gam in the mgcv package? I'm looking for something like what you get using resid=T in Splus plot.gam. Thanks in advance Toby -----Original Message----- From: Simon Wood [mailto:snw at mcs.st-and.ac.uk] Sent: 23 January, 2002 8:14 PM To: Toby.Patterson at csiro.au Cc: r-help at stat.math.ethz.ch Subject: Re: [R] multiple surfaces in
2005 Feb 27
1
prediction, gam, mgcv
I fitted a GAM model with Poisson distribution using the function gam() in the mgcv package. My model is of the form: mod<-gam(y~s(x0)+s(x1)+s(x2),family=poisson). To extract estimates at a specified set of covariate values I used the gam `predict' method. But I want to get estimate and standard error of the difference of two fitted values. Can someone explain what should I do? Thank
2006 Jun 18
1
GAM selection error msgs (mgcv & gam packages)
Hi all, My question concerns 2 error messages; one in the gam package and one in the mgcv package (see below). I have read help files and Chambers and Hastie book but am failing to understand how I can solve this problem. Could you please tell me what I must adjust so that the command does not generate error message? I am trying to achieve model selection for a GAM which is required for
2010 Aug 04
2
more questions on gam/gamm(mgcv)...
Hi R-users, I'm using R 2.11.1, mgcv 1.6-2 to fit a generalized additive mixed model. I'm new to this package...and just got more and more problems... 1. Can I include correlation and/or random effect into gam( ) also? or only gamm( ) could be used? 2. I want to estimate the smoothing function s(x) under each level of treatment. i.e. different s(x) in each level of treatment. shall I
2009 Oct 13
2
How to choose a proper smoothing spline in GAM of mgcv package?
Hi, there, I have 5 datasets. I would like to choose a basis spline with same knots in GAM function in order to obtain same basis function for 5 datasets. Moreover, the basis spline is used to for an interaction of two covarites. I used "cr" in one covariate, but it can only smooth w.r.t 1 covariate. Can anyone give me some suggestion about how to choose a proper smoothing spline