similar to: zooreg and lmrob problem (bug?)

Displaying 20 results from an estimated 500 matches similar to: "zooreg and lmrob problem (bug?)"

2011 Jul 28
1
Problem with anova.lmRob() "robust" package
Dear R users, I'd like to known your opinion about a problem with anova.lmRob() of "Robust" package that occurs when I run a lmRob() regression on my dataset. I check my univariate model by single object anova as anova(lmRob(y~x)). If I compare my model with the null model (y~1), I must obtain the same results, but not for my data. Is it possible? My example:
2010 Dec 13
1
Wrong contrast matrix for nested factors in lm(), rlm(), and lmRob()
This message also reports wrong estimates produced by lmRob.fit.compute() for nested factors when using the correct contrast matrix. And in these respects, I have found that S-Plus behaves the same way as R. Using the three available contrast types (sum, treatment, helmert) with lm() or lm.fit(), but just contr.sum with rlm() and lmRob(), and small examples, I generated contrast matrices for
2018 Mar 03
2
lmrob gives NA coefficients
Dear list members, I want to perform an MM-regression. This seems an easy task using the function lmrob(), however, this function provides me with NA coefficients. My data generating process is as follows: rho <- 0.15 # low interdependency Sigma <- matrix(rho, d, d); diag(Sigma) <- 1 x.clean <- mvrnorm(n, rep(0,d), Sigma) beta <- c(1.0, 2.0, 3.0, 4.0) error <- rnorm(n = n,
2018 Mar 03
0
lmrob gives NA coefficients
> On Mar 3, 2018, at 3:04 PM, Christien Kerbert <christienkerbert at gmail.com> wrote: > > Dear list members, > > I want to perform an MM-regression. This seems an easy task using the > function lmrob(), however, this function provides me with NA coefficients. > My data generating process is as follows: > > rho <- 0.15 # low interdependency > Sigma <-
2018 Mar 04
2
lmrob gives NA coefficients
Thanks for your reply. I use mvrnorm from the *MASS* package and lmrob from the *robustbase* package. To further explain my data generating process, the idea is as follows. The explanatory variables are generated my a multivariate normal distribution where the covariance matrix of the variables is defined by Sigma in my code, with ones on the diagonal and rho = 0.15 on the non-diagonal. Then y
2018 Mar 04
1
lmrob gives NA coefficients
d is the number of observed variables (d = 3 in this example). n is the number of observations. 2018-03-04 11:30 GMT+01:00 Eric Berger <ericjberger at gmail.com>: > What is 'd'? What is 'n'? > > > On Sun, Mar 4, 2018 at 12:14 PM, Christien Kerbert < > christienkerbert at gmail.com> wrote: > >> Thanks for your reply. >> >> I use
2018 Mar 04
0
lmrob gives NA coefficients
What is 'd'? What is 'n'? On Sun, Mar 4, 2018 at 12:14 PM, Christien Kerbert < christienkerbert at gmail.com> wrote: > Thanks for your reply. > > I use mvrnorm from the *MASS* package and lmrob from the *robustbase* > package. > > To further explain my data generating process, the idea is as follows. The > explanatory variables are generated my a
2009 Apr 08
1
predict "interval" for lmRob?
lm's "predict" function offers an "interval" parameter to choose between 'confidence' and 'prediction' bands. In the package "robust" and for "lmRob", there is also a "predict" but it lacks such a parameter, and the documented "type" parameter has only "response" offerred. Is there some way of obtaining
2007 Nov 16
1
Question about lmRob
Hi, I am trying to fit a ANCOVA model using lmRob. The P-values of the variables in the model differ hugely between the summary() function and the anova() function (from >0.8 in the summary to <0.001in the anova for the same variable). I understand that with an ANCOVA the order in which the variables are added to the model matters and that this influences the P-value, but can this make such
2008 Jan 11
0
Behaviour of standard error estimates in lmRob and the like
I am looking at MM-estimates for some interlab comparison work. The usual situation in this particular context is a modest number of results from very expensive methods with abnormally well-characterised performance, so for once we have good "variance" estimates (which can differ substantially for good reason) from most labs. But there remains room for human error or unexpected chemistry
2011 Jul 28
0
R: Re: Problem with anova.lmRob() "robust" package
I'm sorry, maybe the question was bad posed. Ista has well described my problem. Thanks Massimo >----Messaggio originale---- >Da: izahn at psych.rochester.edu >Data: 28/07/2011 17.52 >A: "David Winsemius"<dwinsemius at comcast.net> >Cc: "m.fenati at libero.it"<m.fenati at libero.it>, <r-help at r-project.org> >Ogg: Re: [R]
2011 Mar 16
0
cross validation? when rlm, lmrob or lmRob
Dear community, I have fitted a model using comands above, (rlm, lmrob or lmRob). I don't have new data to validate de models obtained. I was wondering if exists something similar to CVlm in robust regression. In case there isn't, any suggestion for validation would be appreciated. Thanks, user at host.com -- View this message in context:
2013 Apr 03
0
Help with lmRob function
Hi, I am fairly new to R and have encountered an issue with the lmRob function that I have been unable to resolve. I am trying to run a robust regression using the lmRob function which runs successfully, but the results are rather strange. I'm not sure it's important, but my model has 3 dichotomous categorical variables and 2 continuous variables in it. When I look at a summary of my
2018 Mar 04
0
lmrob gives NA coefficients
Hard to help you if you don't provide a reproducible example. On Sun, Mar 4, 2018 at 1:05 PM, Christien Kerbert < christienkerbert at gmail.com> wrote: > d is the number of observed variables (d = 3 in this example). n is the > number of observations. > > 2018-03-04 11:30 GMT+01:00 Eric Berger <ericjberger at gmail.com>: > >> What is 'd'? What is
2008 May 14
1
rlm and lmrob error messages
Hello all, I'm using R2.7.0 (on Windows 2000) and I'm trying do run a robust regression on following model structure: model = "Y ~ x1*x2 / (x3 + x4 + x5 +x6)" where x1 and x2 are both factors (either 1 or 0) and x3.....x6 are numeric. The error code I get when running rlm(as.formula(model), data=daymean) is: error in rlm.default(x, y, weights, method = method, wt.method =
2007 Aug 02
1
Using 'diff' on zoo vs zooreg classes (possible bug?)
Hello, Can anyone explain the following behaviour? To me it seems a bug, but maybe it is intentional. It seems that a diff on a zooreg class that is not _strictly_ regular only considers those entries that are 'deltat' apart. In the following, diff on the zooreg class only returns values where the index was one second apart. The example replicates by dev code, but I've also tested
2011 Sep 22
2
Subsetting a zooreg object using window / subset
Dear R users, I am currently working in subsetting a zooreg() object using either window or subset. I have a solution but it may be a bit cumbersome when I start working with actual data. Your inputs would be greatly appreciated. Example: I have a zooreg() object that starts in 1997 and ends in 2001. This object contains daily data for the 4 years
2005 Aug 27
2
zoo, zooreg, & ISOdatetime
I create a zooreg object that runs from Jan-1-2002 0:00 to Jun-1-2005 0:00... regts.start = ISOdatetime(2002, 1, 1, hour=0, min=0, sec=0, tz="") regts.end = ISOdatetime(2005, 6, 1, hour=0, min=0, sec=0, tz="") regts.zoo <- zooreg( NA, regts.start, regts.end, deltat=3600 ) Upon inspection: > regts.zoo[1:3] 2002-01-01 00:00:00 2002-01-01 01:00:00 2002-01-01 02:00:00
2013 May 08
1
How to calculate Hightest Posterior Density (HPD) of coeficients in a simple regression (lm) in R?
Hi! I am trying to calculate HPD for the coeficients of regression models fitted with lm or lmrob in R, pretty much in the same way that can be accomplished by the association of mcmcsamp and HPDinterval functions for multilevel models fitted with lmer. Can anyone point me in the right direction on which packages/how to implement this? Thanks for your time! R. [[alternative HTML version
2018 Apr 07
0
Fast tau-estimator line does not appear on the plot
You need to pay attention to the documentation more closely. If you don't know what something means, that is usually a signal that you need to study more... in this case about the difference between an input variable and a design (model) matrix. This is a concept from the standard linear algebra formulation for regression equations. (Note that I have never used RobPer, nor do I regularly