Liam Howlett
2021-May-25 18:39 UTC
[Nouveau] [PATCH v9 03/10] mm/rmap: Split try_to_munlock from try_to_unmap
* Alistair Popple <apopple at nvidia.com> [210524 09:29]:> The behaviour of try_to_unmap_one() is difficult to follow because it > performs different operations based on a fairly large set of flags used > in different combinations. > > TTU_MUNLOCK is one such flag. However it is exclusively used by > try_to_munlock() which specifies no other flags. Therefore rather than > overload try_to_unmap_one() with unrelated behaviour split this out into > it's own function and remove the flag. > > Signed-off-by: Alistair Popple <apopple at nvidia.com> > Reviewed-by: Ralph Campbell <rcampbell at nvidia.com> > Reviewed-by: Christoph Hellwig <hch at lst.de> > > --- > > v9: > * Improved comments > > v8: > * Renamed try_to_munlock to page_mlock to better reflect what the > function actually does. > * Removed the TODO from the documentation that this patch addresses. > > v7: > * Added Christoph's Reviewed-by > > v4: > * Removed redundant check for VM_LOCKED > --- > Documentation/vm/unevictable-lru.rst | 33 ++++++--------- > include/linux/rmap.h | 3 +- > mm/mlock.c | 10 ++--- > mm/rmap.c | 61 ++++++++++++++++++++-------- > 4 files changed, 63 insertions(+), 44 deletions(-) > > diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst > index 0e1490524f53..eae3af17f2d9 100644 > --- a/Documentation/vm/unevictable-lru.rst > +++ b/Documentation/vm/unevictable-lru.rst > @@ -389,14 +389,14 @@ mlocked, munlock_vma_page() updates that zone statistics for the number of > mlocked pages. Note, however, that at this point we haven't checked whether > the page is mapped by other VM_LOCKED VMAs. > > -We can't call try_to_munlock(), the function that walks the reverse map to > +We can't call page_mlock(), the function that walks the reverse map to > check for other VM_LOCKED VMAs, without first isolating the page from the LRU. > -try_to_munlock() is a variant of try_to_unmap() and thus requires that the page > +page_mlock() is a variant of try_to_unmap() and thus requires that the page > not be on an LRU list [more on these below]. However, the call to > -isolate_lru_page() could fail, in which case we couldn't try_to_munlock(). So, > +isolate_lru_page() could fail, in which case we can't call page_mlock(). So, > we go ahead and clear PG_mlocked up front, as this might be the only chance we > -have. If we can successfully isolate the page, we go ahead and > -try_to_munlock(), which will restore the PG_mlocked flag and update the zone > +have. If we can successfully isolate the page, we go ahead and call > +page_mlock(), which will restore the PG_mlocked flag and update the zone > page statistics if it finds another VMA holding the page mlocked. If we fail > to isolate the page, we'll have left a potentially mlocked page on the LRU. > This is fine, because we'll catch it later if and if vmscan tries to reclaim > @@ -545,31 +545,24 @@ munlock or munmap system calls, mm teardown (munlock_vma_pages_all), reclaim, > holepunching, and truncation of file pages and their anonymous COWed pages. > > > -try_to_munlock() Reverse Map Scan > +page_mlock() Reverse Map Scan > --------------------------------- > > -.. warning:: > - [!] TODO/FIXME: a better name might be page_mlocked() - analogous to the > - page_referenced() reverse map walker. > - > When munlock_vma_page() [see section :ref:`munlock()/munlockall() System Call > Handling <munlock_munlockall_handling>` above] tries to munlock a > page, it needs to determine whether or not the page is mapped by any > VM_LOCKED VMA without actually attempting to unmap all PTEs from the > page. For this purpose, the unevictable/mlock infrastructure > -introduced a variant of try_to_unmap() called try_to_munlock(). > +introduced a variant of try_to_unmap() called page_mlock(). > > -try_to_munlock() calls the same functions as try_to_unmap() for anonymous and > -mapped file and KSM pages with a flag argument specifying unlock versus unmap > -processing. Again, these functions walk the respective reverse maps looking > -for VM_LOCKED VMAs. When such a VMA is found, as in the try_to_unmap() case, > -the functions mlock the page via mlock_vma_page() and return SWAP_MLOCK. This > -undoes the pre-clearing of the page's PG_mlocked done by munlock_vma_page. > +page_mlock() walks the respective reverse maps looking for VM_LOCKED VMAs. When > +such a VMA is found the page is mlocked via mlock_vma_page(). This undoes the > +pre-clearing of the page's PG_mlocked done by munlock_vma_page. > > -Note that try_to_munlock()'s reverse map walk must visit every VMA in a page's > +Note that page_mlock()'s reverse map walk must visit every VMA in a page's > reverse map to determine that a page is NOT mapped into any VM_LOCKED VMA. > However, the scan can terminate when it encounters a VM_LOCKED VMA. > -Although try_to_munlock() might be called a great many times when munlocking a > +Although page_mlock() might be called a great many times when munlocking a > large region or tearing down a large address space that has been mlocked via > mlockall(), overall this is a fairly rare event. > > @@ -602,7 +595,7 @@ inactive lists to the appropriate node's unevictable list. > shrink_inactive_list() should only see SHM_LOCK'd pages that became SHM_LOCK'd > after shrink_active_list() had moved them to the inactive list, or pages mapped > into VM_LOCKED VMAs that munlock_vma_page() couldn't isolate from the LRU to > -recheck via try_to_munlock(). shrink_inactive_list() won't notice the latter, > +recheck via page_mlock(). shrink_inactive_list() won't notice the latter, > but will pass on to shrink_page_list(). > > shrink_page_list() again culls obviously unevictable pages that it could > diff --git a/include/linux/rmap.h b/include/linux/rmap.h > index def5c62c93b3..38a746787c2f 100644 > --- a/include/linux/rmap.h > +++ b/include/linux/rmap.h > @@ -87,7 +87,6 @@ struct anon_vma_chain { > > enum ttu_flags { > TTU_MIGRATION = 0x1, /* migration mode */ > - TTU_MUNLOCK = 0x2, /* munlock mode */ > > TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ > TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ > @@ -239,7 +238,7 @@ int page_mkclean(struct page *); > * called in munlock()/munmap() path to check for other vmas holding > * the page mlocked. > */ > -void try_to_munlock(struct page *); > +void page_mlock(struct page *page); > > void remove_migration_ptes(struct page *old, struct page *new, bool locked); > > diff --git a/mm/mlock.c b/mm/mlock.c > index df590fda5688..a518d4c48e65 100644 > --- a/mm/mlock.c > +++ b/mm/mlock.c > @@ -108,7 +108,7 @@ void mlock_vma_page(struct page *page) > /* > * Finish munlock after successful page isolation > * > - * Page must be locked. This is a wrapper for try_to_munlock() > + * Page must be locked. This is a wrapper for page_mlock() > * and putback_lru_page() with munlock accounting. > */ > static void __munlock_isolated_page(struct page *page) > @@ -118,7 +118,7 @@ static void __munlock_isolated_page(struct page *page) > * and we don't need to check all the other vmas. > */ > if (page_mapcount(page) > 1) > - try_to_munlock(page); > + page_mlock(page); > > /* Did try_to_unlock() succeed or punt? */ > if (!PageMlocked(page)) > @@ -158,7 +158,7 @@ static void __munlock_isolation_failed(struct page *page) > * munlock()ed or munmap()ed, we want to check whether other vmas hold the > * page locked so that we can leave it on the unevictable lru list and not > * bother vmscan with it. However, to walk the page's rmap list in > - * try_to_munlock() we must isolate the page from the LRU. If some other > + * page_mlock() we must isolate the page from the LRU. If some other > * task has removed the page from the LRU, we won't be able to do that. > * So we clear the PageMlocked as we might not get another chance. If we > * can't isolate the page, we leave it for putback_lru_page() and vmscan > @@ -168,7 +168,7 @@ unsigned int munlock_vma_page(struct page *page) > { > int nr_pages; > > - /* For try_to_munlock() and to serialize with page migration */ > + /* For page_mlock() and to serialize with page migration */ > BUG_ON(!PageLocked(page)); > VM_BUG_ON_PAGE(PageTail(page), page); > > @@ -205,7 +205,7 @@ static int __mlock_posix_error_return(long retval) > * > * The fast path is available only for evictable pages with single mapping. > * Then we can bypass the per-cpu pvec and get better performance. > - * when mapcount > 1 we need try_to_munlock() which can fail. > + * when mapcount > 1 we need page_mlock() which can fail. > * when !page_evictable(), we need the full redo logic of putback_lru_page to > * avoid leaving evictable page in unevictable list. > * > diff --git a/mm/rmap.c b/mm/rmap.c > index bc08c4d4b58a..e88966903e1e 100644 > --- a/mm/rmap.c > +++ b/mm/rmap.c > @@ -1405,10 +1405,6 @@ static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, > struct mmu_notifier_range range; > enum ttu_flags flags = (enum ttu_flags)(long)arg; > > - /* munlock has nothing to gain from examining un-locked vmas */ > - if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) > - return true; > - > if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && > is_zone_device_page(page) && !is_device_private_page(page)) > return true; > @@ -1469,8 +1465,6 @@ static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, > page_vma_mapped_walk_done(&pvmw); > break; > } > - if (flags & TTU_MUNLOCK) > - continue; > } > > /* Unexpected PMD-mapped THP? */ > @@ -1784,20 +1778,53 @@ bool try_to_unmap(struct page *page, enum ttu_flags flags) > return !page_mapcount(page) ? true : false; > } > > +/* > + * Walks the vma's mapping a page and mlocks the page if any locked vma's are > + * found. Once one is found the page is locked and the scan can be terminated. > + */Can you please add that this requires the mmap_sem() lock to the comments?> +static bool page_mlock_one(struct page *page, struct vm_area_struct *vma, > + unsigned long address, void *unused) > +{ > + struct page_vma_mapped_walk pvmw = { > + .page = page, > + .vma = vma, > + .address = address, > + }; > + > + /* An un-locked vma doesn't have any pages to lock, continue the scan */ > + if (!(vma->vm_flags & VM_LOCKED)) > + return true; > + > + while (page_vma_mapped_walk(&pvmw)) { > + /* PTE-mapped THP are never mlocked */ > + if (!PageTransCompound(page)) > + mlock_vma_page(page); > + page_vma_mapped_walk_done(&pvmw); > + > + /* > + * no need to continue scanning other vma's if the page has > + * been locked. > + */ > + return false; > + } > + > + return true; > +} > + > /** > - * try_to_munlock - try to munlock a page > - * @page: the page to be munlocked > + * page_mlock - try to mlock a page > + * @page: the page to be mlocked > * > - * Called from munlock code. Checks all of the VMAs mapping the page > - * to make sure nobody else has this page mlocked. The page will be > - * returned with PG_mlocked cleared if no other vmas have it mlocked. > + * Called from munlock code. Checks all of the VMAs mapping the page and mlocks > + * the page if any are found. The page will be returned with PG_mlocked cleared > + * if it is not mapped by any locked vmas. > + * > + * mmap_lock should be held for read or write. > */ > - > -void try_to_munlock(struct page *page) > +void page_mlock(struct page *page) > { > struct rmap_walk_control rwc = { > - .rmap_one = try_to_unmap_one, > - .arg = (void *)TTU_MUNLOCK, > + .rmap_one = page_mlock_one, > .done = page_not_mapped, > .anon_lock = page_lock_anon_vma_read, > > @@ -1849,7 +1876,7 @@ static struct anon_vma *rmap_walk_anon_lock(struct page *page, > * Find all the mappings of a page using the mapping pointer and the vma chains > * contained in the anon_vma struct it points to. > * > - * When called from try_to_munlock(), the mmap_lock of the mm containing the vma > + * When called from page_mlock(), the mmap_lock of the mm containing the vma > * where the page was found will be held for write. So, we won't recheck > * vm_flags for that VMA. That should be OK, because that vma shouldn't be > * LOCKED. > @@ -1901,7 +1928,7 @@ static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, > * Find all the mappings of a page using the mapping pointer and the vma chains > * contained in the address_space struct it points to. > * > - * When called from try_to_munlock(), the mmap_lock of the mm containing the vma > + * When called from page_mlock(), the mmap_lock of the mm containing the vma > * where the page was found will be held for write. So, we won't recheck > * vm_flags for that VMA. That should be OK, because that vma shouldn't be > * LOCKED. > -- > 2.20.1 > >I believe munlock_vma_pages_range() still references the old function name? Thanks, Liam
Shakeel Butt
2021-May-25 23:45 UTC
[Nouveau] [PATCH v9 03/10] mm/rmap: Split try_to_munlock from try_to_unmap
On Tue, May 25, 2021 at 11:40 AM Liam Howlett <liam.howlett at oracle.com> wrote:>[...]> > > > +/* > > + * Walks the vma's mapping a page and mlocks the page if any locked vma's are > > + * found. Once one is found the page is locked and the scan can be terminated. > > + */ > > Can you please add that this requires the mmap_sem() lock to the > comments? >Why does this require mmap_sem() lock? Also mmap_sem() lock of which mm_struct?> > +static bool page_mlock_one(struct page *page, struct vm_area_struct *vma, > > + unsigned long address, void *unused) > > +{ > > + struct page_vma_mapped_walk pvmw = { > > + .page = page, > > + .vma = vma, > > + .address = address, > > + }; > > + > > + /* An un-locked vma doesn't have any pages to lock, continue the scan */ > > + if (!(vma->vm_flags & VM_LOCKED)) > > + return true; > > + > > + while (page_vma_mapped_walk(&pvmw)) { > > + /* PTE-mapped THP are never mlocked */ > > + if (!PageTransCompound(page)) > > + mlock_vma_page(page); > > + page_vma_mapped_walk_done(&pvmw); > > + > > + /* > > + * no need to continue scanning other vma's if the page has > > + * been locked. > > + */ > > + return false; > > + } > > + > > + return true; > > +}
Liam Howlett
2021-Jun-04 20:49 UTC
[Nouveau] [PATCH v9 03/10] mm/rmap: Split try_to_munlock from try_to_unmap
* Shakeel Butt <shakeelb at google.com> [210525 19:45]:> On Tue, May 25, 2021 at 11:40 AM Liam Howlett <liam.howlett at oracle.com> wrote: > > > [...] > > > > > > +/* > > > + * Walks the vma's mapping a page and mlocks the page if any locked vma's are > > > + * found. Once one is found the page is locked and the scan can be terminated. > > > + */ > > > > Can you please add that this requires the mmap_sem() lock to the > > comments? > > > > Why does this require mmap_sem() lock? Also mmap_sem() lock of which mm_struct?Doesn't the mlock_vma_page() require the mmap_sem() for reading? The mm_struct in vma->vm_mm;>From what I can see, at least the following paths have mmap_lock heldfor writing: munlock_vma_pages_range() from __do_munmap() munlokc_vma_pages_range() from remap_file_pages()> > > > +static bool page_mlock_one(struct page *page, struct vm_area_struct *vma, > > > + unsigned long address, void *unused) > > > +{ > > > + struct page_vma_mapped_walk pvmw = { > > > + .page = page, > > > + .vma = vma, > > > + .address = address, > > > + }; > > > + > > > + /* An un-locked vma doesn't have any pages to lock, continue the scan */ > > > + if (!(vma->vm_flags & VM_LOCKED)) > > > + return true; > > > + > > > + while (page_vma_mapped_walk(&pvmw)) { > > > + /* PTE-mapped THP are never mlocked */ > > > + if (!PageTransCompound(page)) > > > + mlock_vma_page(page); > > > + page_vma_mapped_walk_done(&pvmw); > > > + > > > + /* > > > + * no need to continue scanning other vma's if the page has > > > + * been locked. > > > + */ > > > + return false; > > > + } > > > + > > > + return true; > > > +}munlock_vma_pages_range() comments still references try_to_{munlock|unmap}