Hello,
I am trying to perform a Kolmogorov?Smirnov test to assess the difference
between a distribution and samples drawn proportionally to size of different
sizes. I managed to compute the Kolmogorov?Smirnov distance but I am lost with
the p-value. I have looked into the ks.test function unsuccessfully. Can anyone
help me with computing p-values for a two-tailed test?
Below a simplified version of my code.
Thanks in advance.
Gianluca
library(spatstat)
#reference distribution
d_1 <- sort(rpois(1000, 500))
p_1 <- d_1/sum(d_1)
m_1 <- data.frame(d_1, p_1)
#data frame to store the values of the siumation
d_stat <- data.frame(1:1000, NA, NA)
names(d_stat) <- c("sample_size", "ks_distance",
"p_value")
#simulation
for (i in 1:1000) {
#sample from the reference distribution
m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]
m_2 <-m_2[order(m_2$d_1),]
d_2 <- m_2$d_1
p_2 <- m_2$p_1
#weighted ecdf for the reference distribution and the sample
f_d_1 <- ewcdf(d_1, normalise=F)
f_d_2 <- ewcdf(d_2, 1/p_2, normalise=F, adjust=1/length(d_2))
#kolmogorov-smirnov distance
d_stat[i,2] <- max(abs(f_d_1(d_2) - f_d_2(d_2)))
}
[[alternative HTML version deleted]]
Hello,
I don't have the algorithms at hand but the KS statistic calculation is
more complicated than your max/abs difference.
Anyway, why not use ks.test? it's not that difficult:
set.seed(1234)
#reference distribution
d_1 <- sort(rpois(1000, 500))
p_1 <- d_1/sum(d_1)
m_1 <- data.frame(d_1, p_1)
#data frame to store the values of the simulation
d_stat <- data.frame(1:1000, NA, NA)
names(d_stat) <- c("sample_size", "ks_distance",
"p_value")
#simulation
for (i in 1:1000) {
#sample from the reference distribution
m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]
d_2 <- m_2$d_1
ht <- ks.test(d_1, d_2)
#kolmogorov-smirnov distance
d_stat[i, 2] <- ht$statistic
d_stat[i, 3] <- ht$p.value
}
hist(d_stat[, 2])
hist(d_stat[, 3])
Note that d_2 is not sorted, but the results are equal in the sense of
function identical(), meaning they are *exactly* the same. Why shouldn't
they?
Hope this helps,
Rui Barradas
?s 17:06 de 05/09/19, Boo G. escreveu:> Hello,
>
> I am trying to perform a Kolmogorov?Smirnov test to assess the difference
between a distribution and samples drawn proportionally to size of different
sizes. I managed to compute the Kolmogorov?Smirnov distance but I am lost with
the p-value. I have looked into the ks.test function unsuccessfully. Can anyone
help me with computing p-values for a two-tailed test?
>
> Below a simplified version of my code.
>
> Thanks in advance.
> Gianluca
>
>
> library(spatstat)
>
> #reference distribution
> d_1 <- sort(rpois(1000, 500))
> p_1 <- d_1/sum(d_1)
> m_1 <- data.frame(d_1, p_1)
>
> #data frame to store the values of the siumation
> d_stat <- data.frame(1:1000, NA, NA)
> names(d_stat) <- c("sample_size", "ks_distance",
"p_value")
>
> #simulation
> for (i in 1:1000) {
> #sample from the reference distribution
> m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]
> m_2 <-m_2[order(m_2$d_1),]
> d_2 <- m_2$d_1
> p_2 <- m_2$p_1
>
> #weighted ecdf for the reference distribution and the sample
> f_d_1 <- ewcdf(d_1, normalise=F)
> f_d_2 <- ewcdf(d_2, 1/p_2, normalise=F, adjust=1/length(d_2))
>
> #kolmogorov-smirnov distance
> d_stat[i,2] <- max(abs(f_d_1(d_2) - f_d_2(d_2)))
> }
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
Thanks for your reply, Rui. I don?t think that I can use directly the ks.test because I have a weighted sample (see m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]) and I want to account for that. That?s why I am trying to compute everything manually. Also, if you look at the results of the ks.test in your simulation, you will notice that the p-value always implies that the sample is always (even with same size = 1) drawn form the same distribution. This looks suspicious to me. What are your thoughts?>> On 5 Sep 2019, at 20:29, Rui Barradas <ruipbarradas at sapo.pt> wrote: > > Hello, > > I don't have the algorithms at hand but the KS statistic calculation is more complicated than your max/abs difference. > > Anyway, why not use ks.test? it's not that difficult: > > > set.seed(1234) > #reference distribution > d_1 <- sort(rpois(1000, 500)) > p_1 <- d_1/sum(d_1) > m_1 <- data.frame(d_1, p_1) > > #data frame to store the values of the simulation > d_stat <- data.frame(1:1000, NA, NA) > names(d_stat) <- c("sample_size", "ks_distance", "p_value") > > #simulation > for (i in 1:1000) { > #sample from the reference distribution > m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),] > d_2 <- m_2$d_1 > > ht <- ks.test(d_1, d_2) > #kolmogorov-smirnov distance > d_stat[i, 2] <- ht$statistic > d_stat[i, 3] <- ht$p.value > } > > hist(d_stat[, 2]) > hist(d_stat[, 3]) > > > Note that d_2 is not sorted, but the results are equal in the sense of function identical(), meaning they are *exactly* the same. Why shouldn't they? > > Hope this helps, > > Rui Barradas > > > ?s 17:06 de 05/09/19, Boo G. escreveu: >> Hello, >> I am trying to perform a Kolmogorov?Smirnov test to assess the difference between a distribution and samples drawn proportionally to size of different sizes. I managed to compute the Kolmogorov?Smirnov distance but I am lost with the p-value. I have looked into the ks.test function unsuccessfully. Can anyone help me with computing p-values for a two-tailed test? >> Below a simplified version of my code. >> Thanks in advance. >> Gianluca >> library(spatstat) >> #reference distribution >> d_1 <- sort(rpois(1000, 500)) >> p_1 <- d_1/sum(d_1) >> m_1 <- data.frame(d_1, p_1) >> #data frame to store the values of the siumation >> d_stat <- data.frame(1:1000, NA, NA) >> names(d_stat) <- c("sample_size", "ks_distance", "p_value") >> #simulation >> for (i in 1:1000) { >> #sample from the reference distribution >> m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),] >> m_2 <-m_2[order(m_2$d_1),] >> d_2 <- m_2$d_1 >> p_2 <- m_2$p_1 >> #weighted ecdf for the reference distribution and the sample >> f_d_1 <- ewcdf(d_1, normalise=F) >> f_d_2 <- ewcdf(d_2, 1/p_2, normalise=F, adjust=1/length(d_2)) >> #kolmogorov-smirnov distance >> d_stat[i,2] <- max(abs(f_d_1(d_2) - f_d_2(d_2))) >> } >> [[alternative HTML version deleted]] >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fstat.ethz.ch%2Fmailman%2Flistinfo%2Fr-help&data=01%7C01%7Cgianluca.boo%40soton.ac.uk%7C0c709068527c41e062dd08d7322f0d72%7C4a5378f929f44d3ebe89669d03ada9d8%7C0&sdata=y9jfixyNiroKwKZEJj0owuCcWoeFQKZdaG9WLe2xHQ8%3D&reserved=0 >> PLEASE do read the posting guide https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.R-project.org%2Fposting-guide.html&data=01%7C01%7Cgianluca.boo%40soton.ac.uk%7C0c709068527c41e062dd08d7322f0d72%7C4a5378f929f44d3ebe89669d03ada9d8%7C0&sdata=7n0doy4P1S1TpApX1zpUborAnUnxuOxYtn%2FQ%2BtVztGM%3D&reserved=0 >> and provide commented, minimal, self-contained, reproducible code.
Hello,
I'm sorry, but apparently I missed the point of your problem.
Please do not take my previous answer seriously.
But you can use ks.test, just in a different way than what I wrote
previously.
Corrected code:
#simulation
for (i in 1:1000) {
#sample from the reference distribution
m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]
m_2 <-m_2[order(m_2$d_1),]
d_2 <- m_2$d_1
p_2 <- m_2$p_1
#weighted ecdf for the reference distribution and the sample
f_d_1 <- ewcdf(d_1, normalise=F)
f_d_2 <- ewcdf(d_2, 1/p_2, normalise=F, adjust=1/length(d_2))
#kolmogorov-smirnov distance
x <- f_d_1(d_2)
y <- f_d_2(d_2)
ht <- ks.test(x, y)
d_stat[i, 2] <- ht$statistic
d_stat[i, 3] <- ht$p.value
}
Hope this helps,
Rui Barradas
?s 19:29 de 05/09/19, Rui Barradas escreveu:> Hello,
>
> I don't have the algorithms at hand but the KS statistic calculation is
> more complicated than your max/abs difference.
>
> Anyway, why not use ks.test? it's not that difficult:
>
>
> set.seed(1234)
> #reference distribution
> d_1 <- sort(rpois(1000, 500))
> p_1 <- d_1/sum(d_1)
> m_1 <- data.frame(d_1, p_1)
>
> #data frame to store the values of the simulation
> d_stat <- data.frame(1:1000, NA, NA)
> names(d_stat) <- c("sample_size", "ks_distance",
"p_value")
>
> #simulation
> for (i in 1:1000) {
> ? #sample from the reference distribution
> ? m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]
> ? d_2 <- m_2$d_1
>
> ? ht <- ks.test(d_1, d_2)
> ? #kolmogorov-smirnov distance
> ? d_stat[i, 2] <- ht$statistic
> ? d_stat[i, 3] <- ht$p.value
> }
>
> hist(d_stat[, 2])
> hist(d_stat[, 3])
>
>
> Note that d_2 is not sorted, but the results are equal in the sense of
> function identical(), meaning they are *exactly* the same. Why
shouldn't
> they?
>
> Hope this helps,
>
> Rui Barradas
>
>
> ?s 17:06 de 05/09/19, Boo G. escreveu:
>> Hello,
>>
>> I am trying to perform a Kolmogorov?Smirnov test to assess the
>> difference between a distribution and samples drawn proportionally to
>> size of different sizes. I managed to compute the Kolmogorov?Smirnov
>> distance but I am lost with the p-value. I have looked into the
>> ks.test function unsuccessfully. Can anyone help me with computing
>> p-values for a two-tailed test?
>>
>> Below a simplified version of my code.
>>
>> Thanks in advance.
>> Gianluca
>>
>>
>> library(spatstat)
>>
>> #reference distribution
>> d_1 <- sort(rpois(1000, 500))
>> p_1 <- d_1/sum(d_1)
>> m_1 <- data.frame(d_1, p_1)
>>
>> #data frame to store the values of the siumation
>> d_stat <- data.frame(1:1000, NA, NA)
>> names(d_stat) <- c("sample_size", "ks_distance",
"p_value")
>>
>> #simulation
>> for (i in 1:1000) {
>> ?? #sample from the reference distribution
>> ?? m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),]
>> ?? m_2 <-m_2[order(m_2$d_1),]
>> ?? d_2 <- m_2$d_1
>> ?? p_2 <- m_2$p_1
>>
>> ?? #weighted ecdf for the reference distribution and the sample
>> ?? f_d_1 <- ewcdf(d_1, normalise=F)
>> ?? f_d_2 <- ewcdf(d_2, 1/p_2, normalise=F, adjust=1/length(d_2))
>>
>> ?? #kolmogorov-smirnov distance
>> ?? d_stat[i,2] <- max(abs(f_d_1(d_2) - f_d_2(d_2)))
>> }
>>
>>
>> ????[[alternative HTML version deleted]]
>>
>> ______________________________________________
>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.