Danilo Esteban Rodriguez Zapata
2019-Aug-29 15:01 UTC
[R] R code: How to correct "Error in parse(text = x, keep.source = FALSE)" output in psych package using own dataset
This is a problem related to my last question referred to the omegaSem() function in the psych package (that is already solved because I realized that I was missing a variable assignment and because of that I had an 'object not found' error: https://stackoverflow.com/questions/57661750/one-of-the-omegasem-function-arguments-is-an-object-not-found I was trying to use that function following the guide to find McDonald's hierarchical Omega by Dr William Revelle: http://personality-project.org/r/psych/HowTo/omega.pdf So now, with the variable error corrected, I'm having a different error that does not occur when I use the same function with the example database (Thurstone) provided in the tutorial that comes with the psych package. I mean, I'm able to use the function succesfully using the Thurstone data (with no other action, I have the expected result) but the function doesn't work when I use my own data. I searched over other posted questions, and the actions that they perform are not even similar to what I'm trying to do. I have almost two weeks using R, so I'm not able to identify yet how can I extrapolate the solutions for that error message to my procedure (because it seems to be frequent), although I have basic code knowledge. However related questions give no anwer by now. Additionally, I decided to look over more documentation about the package, and when I was testing other functions, I was able to use the omegaSem() function with another example database, BUT after and only after I did the schmid transformation. So with that, I discovered that when I tried to use the omegaSem() function before the schmid tranformation I had the same error message, but not after that tranformation with this second example database. This make sense with the actual procedure of the omegaSem() procedure, but I'm suposing that it must be done completely and automatically by the omegaSem() function as it is explained in the guide and I have understood until now, as it follows: 1. omegaSem() applies factor analysis 2. omegaSem() rotate factors obliquely 3. omegaSem() transform data with Schmid Leiman (schmid) -------necessary steps to print output------------------- 4. omegaSem() print McDonald's hierarchical Omega So here, another questions appears: - Why the omegaSem() function works with the Thurstone database without any other action and only works for the second example database after performing the schmid transformation? - Why with other databases I dont have the same output applying the omegaSem() function directly? - How is this related to the error message that the compiler shows when I try to apply the function directly to the database? This is the code that I'm using now: (example of the succesfull omegaSem() done after schmid tranformation not included) ```> library(psych) > library(ctv, lavaan) > library(GPArotation) > my.data <- read.file()Data from the .csv file D:\Users\Admon\Documents\prueba_export_1563806208742.csv has been loaded.> describe(my.data)vars n mean sd median trimmed mad min max range skew kurtosis AUT_10_04 1 195 4.11 0.90 4 4.23 1.48 1 5 4 -0.92 0.33 AUN_07_01 2 195 3.79 1.14 4 3.90 1.48 1 5 4 -0.59 -0.71 AUN_07_02 3 195 3.58 1.08 4 3.65 1.48 1 5 4 -0.39 -0.56 AUN_09_01 4 195 4.15 0.80 4 4.23 1.48 1 5 4 -0.76 0.51 AUN_10_01 5 195 4.25 0.79 4 4.34 1.48 1 5 4 -0.91 0.74 AUT_11_01 6 195 4.43 0.77 5 4.56 0.00 1 5 4 -1.69 3.77 AUT_17_01 7 195 4.46 0.67 5 4.55 0.00 1 5 4 -1.34 2.96 AUT_20_03 8 195 4.44 0.65 5 4.53 0.00 2 5 3 -0.84 0.12 CRE_05_02 9 195 2.47 1.01 2 2.43 1.48 1 5 4 0.35 -0.46 CRE_07_04 10 195 2.42 1.08 2 2.34 1.48 1 5 4 0.51 -0.43 CRE_10_01 11 195 4.41 0.68 5 4.51 0.00 2 5 3 -0.79 -0.12 CRE_16_02 12 195 2.75 1.23 3 2.69 1.48 1 5 4 0.29 -0.96 EFEC_03_07 13 195 4.35 0.69 4 4.45 1.48 1 5 4 -0.95 1.59 EFEC_05 14 195 4.53 0.59 5 4.60 0.00 3 5 2 -0.82 -0.34 EFEC_09_02 15 195 2.19 0.91 2 2.11 1.48 1 5 4 0.57 -0.03 EFEC_16_03 16 195 4.21 0.77 4 4.29 1.48 2 5 3 -0.71 -0.04 EVA_02_01 17 195 4.47 0.61 5 4.54 0.00 3 5 2 -0.70 -0.50 EVA_07_01 18 195 4.38 0.60 4 4.43 1.48 3 5 2 -0.40 -0.70 EVA_12_02 19 195 2.64 1.22 2 2.59 1.48 1 5 4 0.30 -1.00 EVA_15_06 20 195 4.19 0.74 4 4.26 1.48 2 5 3 -0.55 -0.29 FLX_04_01 21 195 4.32 0.69 4 4.41 1.48 2 5 3 -0.71 0.05 FLX_04_05 22 195 4.23 0.74 4 4.32 0.00 1 5 4 -0.99 1.69 FLX_08_02 23 195 2.87 1.19 3 2.86 1.48 1 5 4 0.07 -1.05 FLX_10_03 24 195 4.30 0.71 4 4.39 1.48 2 5 3 -0.84 0.66 IDO_01_06 25 195 3.10 1.26 3 3.13 1.48 1 5 4 -0.19 -1.08 IDO_05_02 26 195 2.89 1.26 3 2.87 1.48 1 5 4 -0.03 -1.16 IDO_09_03 27 195 3.87 0.97 4 3.99 1.48 1 5 4 -0.84 0.47 IDO_17_01 28 195 3.94 0.88 4 4.02 0.00 1 5 4 -0.93 1.23 IE_01_03 29 195 4.01 0.88 4 4.10 1.48 1 5 4 -0.91 0.94 IE_10_03 30 195 4.15 1.00 4 4.34 1.48 1 5 4 -1.31 1.28 IE_13_03 31 195 4.16 0.91 4 4.30 1.48 1 5 4 -1.26 1.74 IE_15_01 32 195 4.26 0.85 4 4.39 1.48 1 5 4 -1.16 1.08 LC_07_03 33 195 4.25 0.72 4 4.34 0.00 1 5 4 -1.07 2.64 LC_08_02 34 195 3.25 1.22 4 3.31 1.48 1 5 4 -0.41 -0.90 LC_11_03 35 195 3.50 1.14 4 3.56 1.48 1 5 4 -0.38 -0.68 LC_11_05 36 195 4.42 0.69 5 4.52 0.00 1 5 4 -1.14 1.97 ME_02_03 37 195 4.11 0.92 4 4.25 1.48 1 5 4 -1.18 1.29 ME_07_06 38 195 3.19 1.28 3 3.24 1.48 1 5 4 -0.28 -1.03 ME_09_01 39 195 4.24 0.77 4 4.34 1.48 1 5 4 -1.12 2.19 ME_09_06 40 195 3.23 1.33 4 3.29 1.48 1 5 4 -0.31 -1.14 NEG_01_03 41 195 4.18 0.76 4 4.27 0.00 1 5 4 -1.28 3.33 NEG_05_04 42 195 4.27 0.69 4 4.35 0.00 1 5 4 -0.87 1.75 NEG_07_03 43 195 4.32 0.73 4 4.43 1.48 1 5 4 -1.05 1.55 NEG_08_01 44 195 3.95 0.88 4 4.02 1.48 1 5 4 -0.67 0.29 OP_03_05 45 195 4.32 0.66 4 4.39 0.00 1 5 4 -0.99 2.54 OP_12_01 46 195 4.16 0.80 4 4.25 1.48 1 5 4 -1.02 1.57 OP_14_01 47 195 4.27 0.78 4 4.38 1.48 1 5 4 -1.15 1.67 OP_14_02 48 195 4.36 0.68 4 4.44 1.48 1 5 4 -1.07 2.35 ORL_01_03 49 195 4.36 0.77 4 4.49 1.48 1 5 4 -1.31 2.08 ORL_03_01 50 195 4.41 0.69 4 4.50 1.48 1 5 4 -1.28 2.77 ORL_03_05 51 195 4.36 0.74 4 4.48 1.48 2 5 3 -1.13 1.28 ORL_10_05 52 195 4.40 0.68 4 4.48 1.48 1 5 4 -1.18 2.57 PER_08_02 53 195 3.23 1.29 4 3.29 1.48 1 5 4 -0.26 -1.17 PER_16_01 54 195 4.29 0.70 4 4.38 1.48 2 5 3 -0.74 0.27 PER_19_06 55 195 3.19 1.25 3 3.24 1.48 1 5 4 -0.20 -1.06 PER_22_06 56 195 4.21 0.73 4 4.29 0.00 1 5 4 -0.89 1.46 PLA_01_03 57 195 4.23 0.68 4 4.31 0.00 2 5 3 -0.81 1.18 PLA_05_01 58 195 4.06 0.77 4 4.13 0.00 1 5 4 -0.89 1.29 PLA_07_02 59 195 2.94 1.19 3 2.94 1.48 1 5 4 0.00 -1.02 PLA_10_01 60 195 4.03 0.76 4 4.08 0.00 1 5 4 -0.68 0.87 PLA_12_02 61 195 2.67 1.11 2 2.62 1.48 1 5 4 0.41 -0.61 PLA_18_01 62 195 4.01 0.85 4 4.09 1.48 1 5 4 -0.82 0.78 PR_06_02 63 195 3.02 1.27 3 3.02 1.48 1 5 4 -0.01 -1.13 PR_15_03 64 195 3.55 1.07 4 3.62 1.48 1 5 4 -0.46 -0.22 PR_25_01 65 195 2.36 1.04 2 2.27 1.48 1 5 4 0.73 0.06 PR_25_06 66 195 2.95 1.17 3 2.94 1.48 1 5 4 0.04 -0.86 REL_09_05 67 195 3.81 0.95 4 3.89 1.48 1 5 4 -0.51 -0.31 REL_14_03 68 195 3.99 0.88 4 4.08 1.48 1 5 4 -0.75 0.39 REL_14_06 69 195 2.93 1.26 3 2.92 1.48 1 5 4 0.06 -1.11 REL_16_04 70 195 3.16 1.27 3 3.20 1.48 1 5 4 -0.13 -1.11 RS_02_03 71 195 4.14 0.75 4 4.22 0.00 1 5 4 -0.82 1.14 RS_07_05 72 195 4.29 0.67 4 4.38 0.00 2 5 3 -0.72 0.59 RS_08_05 73 195 4.04 0.88 4 4.13 1.48 1 5 4 -0.97 1.26 RS_13_03 74 195 4.19 0.69 4 4.25 0.00 2 5 3 -0.46 -0.17 TF_03_01 75 195 4.01 0.82 4 4.06 1.48 1 5 4 -0.63 0.32 TF_04_01 76 195 4.09 0.76 4 4.15 0.00 1 5 4 -0.70 0.76 TF_10_03 77 195 4.11 0.85 4 4.21 1.48 1 5 4 -0.96 0.99 TF_12_01 78 195 4.11 0.85 4 4.21 1.48 1 5 4 -1.10 1.66 TRE_09_05 79 195 4.29 0.79 4 4.39 1.48 1 5 4 -1.12 1.74 TRE_09_06 80 195 4.33 0.69 4 4.42 1.48 1 5 4 -1.10 2.36 TRE_26_04 81 195 2.97 1.20 3 2.96 1.48 1 5 4 0.08 -1.01 TRE_26_05 82 195 3.99 0.84 4 4.03 1.48 1 5 4 -0.41 -0.37 ``` Until now, I have charged the libraries, import the my own database and did some simple descriptive statistics. ```> r9 <- my.data > omega(r9)Omega Call: omega(m = r9) Alpha: 0.95 G.6: 0.98 Omega Hierarchical: 0.85 Omega H asymptotic: 0.89 Omega Total 0.96 Schmid Leiman Factor loadings greater than 0.2 g F1* F2* F3* h2 u2 p2 AUT_10_04 0.43 0.30 0.27 0.73 0.68 AUN_07_01 0.05 0.95 0.53 AUN_07_02 0.06 0.94 0.26 AUN_09_01 0.38 0.30 0.24 0.76 0.59 AUN_10_01 0.35 0.55 0.44 0.56 0.29 AUT_11_01 0.42 0.30 0.27 0.73 0.66 AUT_17_01 0.32 0.40 0.28 0.72 0.37 AUT_20_03 0.41 0.25 0.24 0.76 0.73 CRE_05_02- 0.24 -0.53 0.34 0.66 0.17 CRE_07_04- 0.37 -0.51 0.39 0.61 0.35 CRE_10_01 0.46 0.48 0.46 0.54 0.47 CRE_16_02- -0.70 0.48 0.52 0.01 EFEC_03_07 0.46 0.31 0.31 0.69 0.68 EFEC_05 0.43 0.32 0.29 0.71 0.64 EFEC_09_02- 0.29 -0.46 0.29 0.71 0.28 EFEC_16_03 0.49 0.26 0.31 0.69 0.77 EVA_02_01 0.55 0.21 0.36 0.64 0.85 EVA_07_01 0.57 0.37 0.63 0.89 EVA_12_02- -0.61 0.39 0.61 0.06 EVA_15_06 0.50 0.37 0.39 0.61 0.65 FLX_04_01 0.57 0.30 0.42 0.58 0.78 FLX_04_05 0.52 0.26 0.34 0.66 0.80 FLX_08_02- -0.78 0.60 0.40 0.00 FLX_10_03 0.39 0.29 0.24 0.76 0.63 IDO_01_06- -0.80 0.64 0.36 0.00 IDO_05_02- -0.78 0.62 0.38 0.00 IDO_09_03 0.41 0.49 0.42 0.58 0.40 IDO_17_01 0.51 0.51 0.54 0.46 0.49 IE_01_03 0.44 0.60 0.56 0.44 0.35 IE_10_03 0.41 0.53 0.44 0.56 0.37 IE_13_03 0.39 0.48 0.38 0.62 0.40 IE_15_01 0.39 0.40 0.31 0.69 0.49 LC_07_03 0.50 0.27 0.73 0.91 LC_08_02 0.83 0.69 0.31 0.00 LC_11_03 0.25 0.10 0.90 0.60 LC_11_05 0.45 0.24 0.27 0.73 0.75 ME_02_03 0.55 0.31 0.69 0.99 ME_07_06 0.85 0.75 0.25 0.02 ME_09_01 0.64 0.45 0.55 0.93 ME_09_06 0.81 0.69 0.31 0.02 NEG_01_03 0.58 0.20 0.38 0.62 0.88 NEG_05_04 0.70 0.50 0.50 0.98 NEG_07_03 0.64 0.43 0.57 0.96 NEG_08_01 0.43 0.25 0.25 0.75 0.74 OP_03_05 0.62 0.40 0.60 0.98 OP_12_01 0.67 0.46 0.54 0.98 OP_14_01 0.60 0.38 0.62 0.95 OP_14_02 0.66 0.47 0.53 0.93 ORL_01_03 0.67 0.47 0.53 0.96 ORL_03_01 0.66 0.48 0.52 0.91 ORL_03_05 0.64 0.46 0.54 0.90 ORL_10_05 0.66 0.49 0.51 0.89 PER_08_02 0.21 0.84 0.75 0.25 0.06 PER_16_01 0.68 0.21 0.50 0.50 0.91 PER_19_06 0.20 0.73 0.58 0.42 0.07 PER_22_06 0.53 0.30 0.70 0.94 PLA_01_03 0.57 0.36 0.64 0.89 PLA_05_01 0.61 0.42 0.58 0.89 PLA_07_02 0.75 0.61 0.39 0.04 PLA_10_01 0.56 0.36 0.64 0.88 PLA_12_02 0.61 0.37 0.63 0.00 PLA_18_01 0.63 0.47 0.53 0.85 PR_06_02 0.77 0.62 0.38 0.03 PR_15_03 0.31 -0.39 0.24 0.31 0.69 0.31 PR_25_01- -0.56 0.32 0.68 0.00 PR_25_06 0.74 0.55 0.45 0.01 REL_09_05 0.41 -0.23 0.38 0.37 0.63 0.45 REL_14_03 0.41 -0.21 0.29 0.30 0.70 0.56 REL_14_06 0.66 0.21 0.48 0.52 0.04 REL_16_04 0.78 0.63 0.37 0.03 RS_02_03 0.57 0.36 0.64 0.90 RS_07_05 0.68 0.47 0.53 0.99 RS_08_05 0.44 0.20 0.80 0.95 RS_13_03 0.67 0.46 0.54 0.97 TF_03_01 0.66 0.44 0.56 0.98 TF_04_01 0.74 0.56 0.44 0.98 TF_10_03 0.70 0.50 0.50 0.98 TF_12_01 0.61 0.40 0.60 0.92 TRE_09_05 0.70 0.23 0.55 0.45 0.89 TRE_09_06 0.62 0.41 0.59 0.93 TRE_26_04- -0.68 0.47 0.53 0.00 TRE_26_05 0.55 -0.21 0.34 0.66 0.88 With eigenvalues of: g F1* F2* F3* 18.06 0.04 11.47 4.32 general/max 1.57 max/min = 267.1 mean percent general = 0.58 with sd = 0.36 and cv of 0.63 Explained Common Variance of the general factor = 0.53 The degrees of freedom are 3078 and the fit is 34.62 The number of observations was 195 with Chi Square = 5671.12 with prob < 2.8e-157 The root mean square of the residuals is 0.06 The df corrected root mean square of the residuals is 0.06 RMSEA index = 0.078 and the 10 % confidence intervals are 0.063 NA BIC = -10559.18 Compare this with the adequacy of just a general factor and no group factors The degrees of freedom for just the general factor are 3239 and the fit is 51.52 The number of observations was 195 with Chi Square = 8509.84 with prob < 0 The root mean square of the residuals is 0.16 The df corrected root mean square of the residuals is 0.16 RMSEA index = 0.104 and the 10 % confidence intervals are 0.089 NA BIC = -8569.4 Measures of factor score adequacy g F1* F2* F3* Correlation of scores with factors 0.98 0.07 0.98 0.91 Multiple R square of scores with factors 0.95 0.00 0.97 0.83 Minimum correlation of factor score estimates 0.91 -0.99 0.94 0.66 Total, General and Subset omega for each subset g F1* F2* F3* Omega total for total scores and subscales 0.96 NA 0.83 0.95 Omega general for total scores and subscales 0.85 NA 0.82 0.76 Omega group for total scores and subscales 0.09 NA 0.01 0.19 ``` Now, until here, I apply the basic (non hierarchical) omega() function to my own database ```> omegaSem(r9,n.obs=198)Error in parse(text = x, keep.source = FALSE) : <text>:2:0: unexpected end of input 1: ~ ``` The previous is the error message that appears after trying to use the omegaSem() function directly with my own database. Now, following, I present the expected output of omegaSem() applied directly using the Thurstone database. It's similar to the output of the basic omega() function but it has certain distinctions: ```> r9 <- Thurstone > omegaSem(r9,n.obs=500)Call: omegaSem(m = r9, n.obs = 500) Omega Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, digits = digits, title = title, sl = sl, labels = labels, plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option) Alpha: 0.89 G.6: 0.91 Omega Hierarchical: 0.74 Omega H asymptotic: 0.79 Omega Total 0.93 Schmid Leiman Factor loadings greater than 0.2 g F1* F2* F3* h2 u2 p2 Sentences 0.71 0.56 0.82 0.18 0.61 Vocabulary 0.73 0.55 0.84 0.16 0.63 Sent.Completion 0.68 0.52 0.74 0.26 0.63 First.Letters 0.65 0.56 0.73 0.27 0.57 Four.Letter.Words 0.62 0.49 0.63 0.37 0.61 Suffixes 0.56 0.41 0.50 0.50 0.63 Letter.Series 0.59 0.62 0.73 0.27 0.48 Pedigrees 0.58 0.24 0.34 0.51 0.49 0.66 Letter.Group 0.54 0.46 0.52 0.48 0.56 With eigenvalues of: g F1* F2* F3* 3.58 0.96 0.74 0.72 general/max 3.73 max/min = 1.34 mean percent general = 0.6 with sd = 0.05 and cv of 0.09 Explained Common Variance of the general factor = 0.6 The degrees of freedom are 12 and the fit is 0.01 The number of observations was 500 with Chi Square = 7.12 with prob < 0.85 The root mean square of the residuals is 0.01 The df corrected root mean square of the residuals is 0.01 RMSEA index = 0 and the 10 % confidence intervals are 0 0.026 BIC = -67.45 Compare this with the adequacy of just a general factor and no group factors The degrees of freedom for just the general factor are 27 and the fit is 1.48 The number of observations was 500 with Chi Square = 730.93 with prob < 1.3e-136 The root mean square of the residuals is 0.14 The df corrected root mean square of the residuals is 0.16 RMSEA index = 0.23 and the 10 % confidence intervals are 0.214 0.243 BIC = 563.14 Measures of factor score adequacy g F1* F2* F3* Correlation of scores with factors 0.86 0.73 0.72 0.75 Multiple R square of scores with factors 0.74 0.54 0.51 0.57 Minimum correlation of factor score estimates 0.49 0.07 0.03 0.13 Total, General and Subset omega for each subset g F1* F2* F3* Omega total for total scores and subscales 0.93 0.92 0.83 0.79 Omega general for total scores and subscales 0.74 0.58 0.50 0.47 Omega group for total scores and subscales 0.16 0.34 0.32 0.32 The following analyses were done using the lavaan package Omega Hierarchical from a confirmatory model using sem = 0.79 Omega Total from a confirmatory model using sem = 0.93 With loadings of g F1* F2* F3* h2 u2 p2 Sentences 0.77 0.49 0.83 0.17 0.71 Vocabulary 0.79 0.45 0.83 0.17 0.75 Sent.Completion 0.75 0.40 0.73 0.27 0.77 First.Letters 0.61 0.61 0.75 0.25 0.50 Four.Letter.Words 0.60 0.51 0.61 0.39 0.59 Suffixes 0.57 0.39 0.48 0.52 0.68 Letter.Series 0.57 0.73 0.85 0.15 0.38 Pedigrees 0.66 0.25 0.50 0.50 0.87 Letter.Group 0.53 0.41 0.45 0.55 0.62 With eigenvalues of: g F1* F2* F3* 3.87 0.60 0.79 0.76 The degrees of freedom of the confimatory model are 18 and the fit is 57.11391 with p = 5.936744e-06 general/max 4.92 max/min = 1.3 mean percent general = 0.65 with sd = 0.15 and cv of 0.23 Explained Common Variance of the general factor = 0.64 Measures of factor score adequacy g F1* F2* F3* Correlation of scores with factors 0.90 0.68 0.80 0.85 Multiple R square of scores with factors 0.81 0.46 0.64 0.73 Minimum correlation of factor score estimates 0.62 -0.08 0.27 0.45 Total, General and Subset omega for each subset g F1* F2* F3* Omega total for total scores and subscales 0.93 0.92 0.82 0.80 Omega general for total scores and subscales 0.79 0.69 0.48 0.50 Omega group for total scores and subscales 0.14 0.23 0.35 0.31 To get the standard sem fit statistics, ask for summary on the fitted object> ``` I'm expecting to have the same output applying the function directly. My expectation is to make sure if its mandatory to make the schmid transformation before the omegaSem(). I'm supposing that not, because its not supposed to work like that as it says in the guide. Maybe this can be solved correcting the error message: ```> r9 <- my.data > omegaSem(r9,n.obs=198)Error in parse(text = x, keep.source = FALSE) : <text>:2:0: unexpected end of input 1: ~ ^ ``` Hope I've been clear enough. Feel free to ask any other information that you might need. Thank you so much for giving me any guidance to reach the answer of this issue. I higly appreciate any help. Regards, Danilo -- Danilo E. Rodr?guez Zapata Analista en Psicometr?a CEBIAC [[alternative HTML version deleted]]
William Dunlap
2019-Aug-29 17:32 UTC
[R] R code: How to correct "Error in parse(text = x, keep.source = FALSE)" output in psych package using own dataset
> omegaSem(r9,n.obs=198)Error in parse(text = x, keep.source = FALSE) : <text>:2:0: unexpected end of input This error probably comes from calling factor("~") and psych::omegaSem(data) will do that if all the columns in data are very highly correlated with one another. In that case omega(data, nfactor=n) will not be able to find n factors in the data but it returns "~" in place of the factors that it could not find. E.g.,> fakeData <- data.frame(A=1/(1:40), B=1/(2:41), C=1/(3:42), D=1/(4:43),E=1/(5:44))> cor(fakeData)A B C D E A 1.0000000 0.9782320 0.9481293 0.9215071 0.8988962 B 0.9782320 1.0000000 0.9932037 0.9811287 0.9684658 C 0.9481293 0.9932037 1.0000000 0.9969157 0.9906838 D 0.9215071 0.9811287 0.9969157 1.0000000 0.9983014 E 0.8988962 0.9684658 0.9906838 0.9983014 1.0000000> psych::omegaSem(fakeData)Loading required namespace: lavaan Loading required namespace: GPArotation In factor.stats, I could not find the RMSEA upper bound . Sorry about that Error in parse(text = x, keep.source = FALSE) : <text>:2:0: unexpected end of input 1: ~ ^ In addition: Warning message: In cov2cor(t(w) %*% r %*% w) : diag(.) had 0 or NA entries; non-finite result is doubtful> psych::omega(fakeData)$model$lavaanIn factor.stats, I could not find the RMSEA upper bound . Sorry about that [1] g =~ +A+B+C+D+E F1=~ + B + C + D + E F2=~ + A [4] F3=~ Warning message: In cov2cor(t(w) %*% r %*% w) : diag(.) had 0 or NA entries; non-finite result is doubtful You can get a result if you use nfactors=n where n is the number of the good F<n> entries in psych::omega()$model$lavaan:> psych::omegaSem(fakeData, nfactors=2)... Measures of factor score adequacy g F1* F2* Correlation of scores with factors 11.35 12.42 84.45 Multiple R square of scores with factors 128.93 154.32 7131.98 Minimum correlation of factor score estimates 256.86 307.64 14262.96 ... Does that work with your data? This is a problem that the maintainer of psych,> maintainer("psych")[1] "William Revelle <revelle at northwestern.edu>" would like to know about. Bill Dunlap TIBCO Software wdunlap tibco.com On Thu, Aug 29, 2019 at 9:03 AM Danilo Esteban Rodriguez Zapata via R-help < r-help at r-project.org> wrote:> This is a problem related to my last question referred to the omegaSem() > function in the psych package (that is already solved because I realized > that I was missing a variable assignment and because of that I had an > 'object not found' error: > > > https://stackoverflow.com/questions/57661750/one-of-the-omegasem-function-arguments-is-an-object-not-found > > I was trying to use that function following the guide to find McDonald's > hierarchical Omega by Dr William Revelle: > > http://personality-project.org/r/psych/HowTo/omega.pdf > > So now, with the variable error corrected, I'm having a different error > that does not occur when I use the same function with the example database > (Thurstone) provided in the tutorial that comes with the psych package. I > mean, I'm able to use the function succesfully using the Thurstone data > (with no other action, I have the expected result) but the function doesn't > work when I use my own data. > > I searched over other posted questions, and the actions that they perform > are not even similar to what I'm trying to do. I have almost two weeks > using R, so I'm not able to identify yet how can I extrapolate the > solutions for that error message to my procedure (because it seems to be > frequent), although I have basic code knowledge. However related questions > give no anwer by now. > > Additionally, I decided to look over more documentation about the package, > and when I was testing other functions, I was able to use the omegaSem() > function with another example database, BUT after and only after I did the > schmid transformation. So with that, I discovered that when I tried to use > the omegaSem() function before the schmid tranformation I had the same > error message, but not after that tranformation with this second example > database. > > This make sense with the actual procedure of the omegaSem() procedure, but > I'm suposing that it must be done completely and automatically by the > omegaSem() function as it is explained in the guide and I have understood > until now, as it follows: > > 1. omegaSem() applies factor analysis > 2. omegaSem() rotate factors obliquely > 3. omegaSem() transform data with Schmid Leiman (schmid) > > -------necessary steps to print output------------------- > > 4. omegaSem() print McDonald's hierarchical Omega > > So here, another questions appears: - Why the omegaSem() function works > with the Thurstone database without any other action and only works for the > second example database after performing the schmid transformation? - Why > with other databases I dont have the same output applying the omegaSem() > function directly? - How is this related to the error message that the > compiler shows when I try to apply the function directly to the database? > > > This is the code that I'm using now: (example of the succesfull omegaSem() > done after schmid tranformation not included) > > ``` > > library(psych) > > library(ctv, lavaan) > > library(GPArotation) > > my.data <- read.file() > Data from the .csv file > D:\Users\Admon\Documents\prueba_export_1563806208742.csv has been loaded. > > describe(my.data) > vars n mean sd median trimmed mad min max range skew > kurtosis > AUT_10_04 1 195 4.11 0.90 4 4.23 1.48 1 5 4 -0.92 > 0.33 > AUN_07_01 2 195 3.79 1.14 4 3.90 1.48 1 5 4 -0.59 > -0.71 > AUN_07_02 3 195 3.58 1.08 4 3.65 1.48 1 5 4 -0.39 > -0.56 > AUN_09_01 4 195 4.15 0.80 4 4.23 1.48 1 5 4 -0.76 > 0.51 > AUN_10_01 5 195 4.25 0.79 4 4.34 1.48 1 5 4 -0.91 > 0.74 > AUT_11_01 6 195 4.43 0.77 5 4.56 0.00 1 5 4 -1.69 > 3.77 > AUT_17_01 7 195 4.46 0.67 5 4.55 0.00 1 5 4 -1.34 > 2.96 > AUT_20_03 8 195 4.44 0.65 5 4.53 0.00 2 5 3 -0.84 > 0.12 > CRE_05_02 9 195 2.47 1.01 2 2.43 1.48 1 5 4 0.35 > -0.46 > CRE_07_04 10 195 2.42 1.08 2 2.34 1.48 1 5 4 0.51 > -0.43 > CRE_10_01 11 195 4.41 0.68 5 4.51 0.00 2 5 3 -0.79 > -0.12 > CRE_16_02 12 195 2.75 1.23 3 2.69 1.48 1 5 4 0.29 > -0.96 > EFEC_03_07 13 195 4.35 0.69 4 4.45 1.48 1 5 4 -0.95 > 1.59 > EFEC_05 14 195 4.53 0.59 5 4.60 0.00 3 5 2 -0.82 > -0.34 > EFEC_09_02 15 195 2.19 0.91 2 2.11 1.48 1 5 4 0.57 > -0.03 > EFEC_16_03 16 195 4.21 0.77 4 4.29 1.48 2 5 3 -0.71 > -0.04 > EVA_02_01 17 195 4.47 0.61 5 4.54 0.00 3 5 2 -0.70 > -0.50 > EVA_07_01 18 195 4.38 0.60 4 4.43 1.48 3 5 2 -0.40 > -0.70 > EVA_12_02 19 195 2.64 1.22 2 2.59 1.48 1 5 4 0.30 > -1.00 > EVA_15_06 20 195 4.19 0.74 4 4.26 1.48 2 5 3 -0.55 > -0.29 > FLX_04_01 21 195 4.32 0.69 4 4.41 1.48 2 5 3 -0.71 > 0.05 > FLX_04_05 22 195 4.23 0.74 4 4.32 0.00 1 5 4 -0.99 > 1.69 > FLX_08_02 23 195 2.87 1.19 3 2.86 1.48 1 5 4 0.07 > -1.05 > FLX_10_03 24 195 4.30 0.71 4 4.39 1.48 2 5 3 -0.84 > 0.66 > IDO_01_06 25 195 3.10 1.26 3 3.13 1.48 1 5 4 -0.19 > -1.08 > IDO_05_02 26 195 2.89 1.26 3 2.87 1.48 1 5 4 -0.03 > -1.16 > IDO_09_03 27 195 3.87 0.97 4 3.99 1.48 1 5 4 -0.84 > 0.47 > IDO_17_01 28 195 3.94 0.88 4 4.02 0.00 1 5 4 -0.93 > 1.23 > IE_01_03 29 195 4.01 0.88 4 4.10 1.48 1 5 4 -0.91 > 0.94 > IE_10_03 30 195 4.15 1.00 4 4.34 1.48 1 5 4 -1.31 > 1.28 > IE_13_03 31 195 4.16 0.91 4 4.30 1.48 1 5 4 -1.26 > 1.74 > IE_15_01 32 195 4.26 0.85 4 4.39 1.48 1 5 4 -1.16 > 1.08 > LC_07_03 33 195 4.25 0.72 4 4.34 0.00 1 5 4 -1.07 > 2.64 > LC_08_02 34 195 3.25 1.22 4 3.31 1.48 1 5 4 -0.41 > -0.90 > LC_11_03 35 195 3.50 1.14 4 3.56 1.48 1 5 4 -0.38 > -0.68 > LC_11_05 36 195 4.42 0.69 5 4.52 0.00 1 5 4 -1.14 > 1.97 > ME_02_03 37 195 4.11 0.92 4 4.25 1.48 1 5 4 -1.18 > 1.29 > ME_07_06 38 195 3.19 1.28 3 3.24 1.48 1 5 4 -0.28 > -1.03 > ME_09_01 39 195 4.24 0.77 4 4.34 1.48 1 5 4 -1.12 > 2.19 > ME_09_06 40 195 3.23 1.33 4 3.29 1.48 1 5 4 -0.31 > -1.14 > NEG_01_03 41 195 4.18 0.76 4 4.27 0.00 1 5 4 -1.28 > 3.33 > NEG_05_04 42 195 4.27 0.69 4 4.35 0.00 1 5 4 -0.87 > 1.75 > NEG_07_03 43 195 4.32 0.73 4 4.43 1.48 1 5 4 -1.05 > 1.55 > NEG_08_01 44 195 3.95 0.88 4 4.02 1.48 1 5 4 -0.67 > 0.29 > OP_03_05 45 195 4.32 0.66 4 4.39 0.00 1 5 4 -0.99 > 2.54 > OP_12_01 46 195 4.16 0.80 4 4.25 1.48 1 5 4 -1.02 > 1.57 > OP_14_01 47 195 4.27 0.78 4 4.38 1.48 1 5 4 -1.15 > 1.67 > OP_14_02 48 195 4.36 0.68 4 4.44 1.48 1 5 4 -1.07 > 2.35 > ORL_01_03 49 195 4.36 0.77 4 4.49 1.48 1 5 4 -1.31 > 2.08 > ORL_03_01 50 195 4.41 0.69 4 4.50 1.48 1 5 4 -1.28 > 2.77 > ORL_03_05 51 195 4.36 0.74 4 4.48 1.48 2 5 3 -1.13 > 1.28 > ORL_10_05 52 195 4.40 0.68 4 4.48 1.48 1 5 4 -1.18 > 2.57 > PER_08_02 53 195 3.23 1.29 4 3.29 1.48 1 5 4 -0.26 > -1.17 > PER_16_01 54 195 4.29 0.70 4 4.38 1.48 2 5 3 -0.74 > 0.27 > PER_19_06 55 195 3.19 1.25 3 3.24 1.48 1 5 4 -0.20 > -1.06 > PER_22_06 56 195 4.21 0.73 4 4.29 0.00 1 5 4 -0.89 > 1.46 > PLA_01_03 57 195 4.23 0.68 4 4.31 0.00 2 5 3 -0.81 > 1.18 > PLA_05_01 58 195 4.06 0.77 4 4.13 0.00 1 5 4 -0.89 > 1.29 > PLA_07_02 59 195 2.94 1.19 3 2.94 1.48 1 5 4 0.00 > -1.02 > PLA_10_01 60 195 4.03 0.76 4 4.08 0.00 1 5 4 -0.68 > 0.87 > PLA_12_02 61 195 2.67 1.11 2 2.62 1.48 1 5 4 0.41 > -0.61 > PLA_18_01 62 195 4.01 0.85 4 4.09 1.48 1 5 4 -0.82 > 0.78 > PR_06_02 63 195 3.02 1.27 3 3.02 1.48 1 5 4 -0.01 > -1.13 > PR_15_03 64 195 3.55 1.07 4 3.62 1.48 1 5 4 -0.46 > -0.22 > PR_25_01 65 195 2.36 1.04 2 2.27 1.48 1 5 4 0.73 > 0.06 > PR_25_06 66 195 2.95 1.17 3 2.94 1.48 1 5 4 0.04 > -0.86 > REL_09_05 67 195 3.81 0.95 4 3.89 1.48 1 5 4 -0.51 > -0.31 > REL_14_03 68 195 3.99 0.88 4 4.08 1.48 1 5 4 -0.75 > 0.39 > REL_14_06 69 195 2.93 1.26 3 2.92 1.48 1 5 4 0.06 > -1.11 > REL_16_04 70 195 3.16 1.27 3 3.20 1.48 1 5 4 -0.13 > -1.11 > RS_02_03 71 195 4.14 0.75 4 4.22 0.00 1 5 4 -0.82 > 1.14 > RS_07_05 72 195 4.29 0.67 4 4.38 0.00 2 5 3 -0.72 > 0.59 > RS_08_05 73 195 4.04 0.88 4 4.13 1.48 1 5 4 -0.97 > 1.26 > RS_13_03 74 195 4.19 0.69 4 4.25 0.00 2 5 3 -0.46 > -0.17 > TF_03_01 75 195 4.01 0.82 4 4.06 1.48 1 5 4 -0.63 > 0.32 > TF_04_01 76 195 4.09 0.76 4 4.15 0.00 1 5 4 -0.70 > 0.76 > TF_10_03 77 195 4.11 0.85 4 4.21 1.48 1 5 4 -0.96 > 0.99 > TF_12_01 78 195 4.11 0.85 4 4.21 1.48 1 5 4 -1.10 > 1.66 > TRE_09_05 79 195 4.29 0.79 4 4.39 1.48 1 5 4 -1.12 > 1.74 > TRE_09_06 80 195 4.33 0.69 4 4.42 1.48 1 5 4 -1.10 > 2.36 > TRE_26_04 81 195 2.97 1.20 3 2.96 1.48 1 5 4 0.08 > -1.01 > TRE_26_05 82 195 3.99 0.84 4 4.03 1.48 1 5 4 -0.41 > -0.37 > > ``` > > Until now, I have charged the libraries, import the my own database and did > some simple descriptive statistics. > > ``` > > > r9 <- my.data > > omega(r9) > Omega > Call: omega(m = r9) > Alpha: 0.95 > G.6: 0.98 > Omega Hierarchical: 0.85 > Omega H asymptotic: 0.89 > Omega Total 0.96 > > Schmid Leiman Factor loadings greater than 0.2 > g F1* F2* F3* h2 u2 p2 > AUT_10_04 0.43 0.30 0.27 0.73 0.68 > AUN_07_01 0.05 0.95 0.53 > AUN_07_02 0.06 0.94 0.26 > AUN_09_01 0.38 0.30 0.24 0.76 0.59 > AUN_10_01 0.35 0.55 0.44 0.56 0.29 > AUT_11_01 0.42 0.30 0.27 0.73 0.66 > AUT_17_01 0.32 0.40 0.28 0.72 0.37 > AUT_20_03 0.41 0.25 0.24 0.76 0.73 > CRE_05_02- 0.24 -0.53 0.34 0.66 0.17 > CRE_07_04- 0.37 -0.51 0.39 0.61 0.35 > CRE_10_01 0.46 0.48 0.46 0.54 0.47 > CRE_16_02- -0.70 0.48 0.52 0.01 > EFEC_03_07 0.46 0.31 0.31 0.69 0.68 > EFEC_05 0.43 0.32 0.29 0.71 0.64 > EFEC_09_02- 0.29 -0.46 0.29 0.71 0.28 > EFEC_16_03 0.49 0.26 0.31 0.69 0.77 > EVA_02_01 0.55 0.21 0.36 0.64 0.85 > EVA_07_01 0.57 0.37 0.63 0.89 > EVA_12_02- -0.61 0.39 0.61 0.06 > EVA_15_06 0.50 0.37 0.39 0.61 0.65 > FLX_04_01 0.57 0.30 0.42 0.58 0.78 > FLX_04_05 0.52 0.26 0.34 0.66 0.80 > FLX_08_02- -0.78 0.60 0.40 0.00 > FLX_10_03 0.39 0.29 0.24 0.76 0.63 > IDO_01_06- -0.80 0.64 0.36 0.00 > IDO_05_02- -0.78 0.62 0.38 0.00 > IDO_09_03 0.41 0.49 0.42 0.58 0.40 > IDO_17_01 0.51 0.51 0.54 0.46 0.49 > IE_01_03 0.44 0.60 0.56 0.44 0.35 > IE_10_03 0.41 0.53 0.44 0.56 0.37 > IE_13_03 0.39 0.48 0.38 0.62 0.40 > IE_15_01 0.39 0.40 0.31 0.69 0.49 > LC_07_03 0.50 0.27 0.73 0.91 > LC_08_02 0.83 0.69 0.31 0.00 > LC_11_03 0.25 0.10 0.90 0.60 > LC_11_05 0.45 0.24 0.27 0.73 0.75 > ME_02_03 0.55 0.31 0.69 0.99 > ME_07_06 0.85 0.75 0.25 0.02 > ME_09_01 0.64 0.45 0.55 0.93 > ME_09_06 0.81 0.69 0.31 0.02 > NEG_01_03 0.58 0.20 0.38 0.62 0.88 > NEG_05_04 0.70 0.50 0.50 0.98 > NEG_07_03 0.64 0.43 0.57 0.96 > NEG_08_01 0.43 0.25 0.25 0.75 0.74 > OP_03_05 0.62 0.40 0.60 0.98 > OP_12_01 0.67 0.46 0.54 0.98 > OP_14_01 0.60 0.38 0.62 0.95 > OP_14_02 0.66 0.47 0.53 0.93 > ORL_01_03 0.67 0.47 0.53 0.96 > ORL_03_01 0.66 0.48 0.52 0.91 > ORL_03_05 0.64 0.46 0.54 0.90 > ORL_10_05 0.66 0.49 0.51 0.89 > PER_08_02 0.21 0.84 0.75 0.25 0.06 > PER_16_01 0.68 0.21 0.50 0.50 0.91 > PER_19_06 0.20 0.73 0.58 0.42 0.07 > PER_22_06 0.53 0.30 0.70 0.94 > PLA_01_03 0.57 0.36 0.64 0.89 > PLA_05_01 0.61 0.42 0.58 0.89 > PLA_07_02 0.75 0.61 0.39 0.04 > PLA_10_01 0.56 0.36 0.64 0.88 > PLA_12_02 0.61 0.37 0.63 0.00 > PLA_18_01 0.63 0.47 0.53 0.85 > PR_06_02 0.77 0.62 0.38 0.03 > PR_15_03 0.31 -0.39 0.24 0.31 0.69 0.31 > PR_25_01- -0.56 0.32 0.68 0.00 > PR_25_06 0.74 0.55 0.45 0.01 > REL_09_05 0.41 -0.23 0.38 0.37 0.63 0.45 > REL_14_03 0.41 -0.21 0.29 0.30 0.70 0.56 > REL_14_06 0.66 0.21 0.48 0.52 0.04 > REL_16_04 0.78 0.63 0.37 0.03 > RS_02_03 0.57 0.36 0.64 0.90 > RS_07_05 0.68 0.47 0.53 0.99 > RS_08_05 0.44 0.20 0.80 0.95 > RS_13_03 0.67 0.46 0.54 0.97 > TF_03_01 0.66 0.44 0.56 0.98 > TF_04_01 0.74 0.56 0.44 0.98 > TF_10_03 0.70 0.50 0.50 0.98 > TF_12_01 0.61 0.40 0.60 0.92 > TRE_09_05 0.70 0.23 0.55 0.45 0.89 > TRE_09_06 0.62 0.41 0.59 0.93 > TRE_26_04- -0.68 0.47 0.53 0.00 > TRE_26_05 0.55 -0.21 0.34 0.66 0.88 > > With eigenvalues of: > g F1* F2* F3* > 18.06 0.04 11.47 4.32 > > general/max 1.57 max/min = 267.1 > mean percent general = 0.58 with sd = 0.36 and cv of 0.63 > Explained Common Variance of the general factor = 0.53 > > The degrees of freedom are 3078 and the fit is 34.62 > The number of observations was 195 with Chi Square = 5671.12 with prob > < 2.8e-157 > The root mean square of the residuals is 0.06 > The df corrected root mean square of the residuals is 0.06 > RMSEA index = 0.078 and the 10 % confidence intervals are 0.063 NA > BIC = -10559.18 > > Compare this with the adequacy of just a general factor and no group > factors > The degrees of freedom for just the general factor are 3239 and the fit is > 51.52 > The number of observations was 195 with Chi Square = 8509.84 with prob > < 0 > The root mean square of the residuals is 0.16 > The df corrected root mean square of the residuals is 0.16 > > RMSEA index = 0.104 and the 10 % confidence intervals are 0.089 NA > BIC = -8569.4 > > Measures of factor score adequacy > g F1* F2* F3* > Correlation of scores with factors 0.98 0.07 0.98 0.91 > Multiple R square of scores with factors 0.95 0.00 0.97 0.83 > Minimum correlation of factor score estimates 0.91 -0.99 0.94 0.66 > > Total, General and Subset omega for each subset > g F1* F2* F3* > Omega total for total scores and subscales 0.96 NA 0.83 0.95 > Omega general for total scores and subscales 0.85 NA 0.82 0.76 > Omega group for total scores and subscales 0.09 NA 0.01 0.19 > ``` > > Now, until here, I apply the basic (non hierarchical) omega() function to > my own database > > > ``` > > omegaSem(r9,n.obs=198) > Error in parse(text = x, keep.source = FALSE) : > <text>:2:0: unexpected end of input > 1: ~ > ``` > The previous is the error message that appears after trying to use the > omegaSem() function directly with my own database. > > Now, following, I present the expected output of omegaSem() applied > directly using the Thurstone database. It's similar to the output of the > basic omega() function but it has certain distinctions: > > ``` > > > r9 <- Thurstone > > omegaSem(r9,n.obs=500) > > Call: omegaSem(m = r9, n.obs = 500) > Omega > Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, > digits = digits, title = title, sl = sl, labels = labels, > plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option > option) > Alpha: 0.89 > G.6: 0.91 > Omega Hierarchical: 0.74 > Omega H asymptotic: 0.79 > Omega Total 0.93 > > Schmid Leiman Factor loadings greater than 0.2 > g F1* F2* F3* h2 u2 p2 > Sentences 0.71 0.56 0.82 0.18 0.61 > Vocabulary 0.73 0.55 0.84 0.16 0.63 > Sent.Completion 0.68 0.52 0.74 0.26 0.63 > First.Letters 0.65 0.56 0.73 0.27 0.57 > Four.Letter.Words 0.62 0.49 0.63 0.37 0.61 > Suffixes 0.56 0.41 0.50 0.50 0.63 > Letter.Series 0.59 0.62 0.73 0.27 0.48 > Pedigrees 0.58 0.24 0.34 0.51 0.49 0.66 > Letter.Group 0.54 0.46 0.52 0.48 0.56 > > With eigenvalues of: > g F1* F2* F3* > 3.58 0.96 0.74 0.72 > > general/max 3.73 max/min = 1.34 > mean percent general = 0.6 with sd = 0.05 and cv of 0.09 > Explained Common Variance of the general factor = 0.6 > > The degrees of freedom are 12 and the fit is 0.01 > The number of observations was 500 with Chi Square = 7.12 with prob < > 0.85 > The root mean square of the residuals is 0.01 > The df corrected root mean square of the residuals is 0.01 > RMSEA index = 0 and the 10 % confidence intervals are 0 0.026 > BIC = -67.45 > > Compare this with the adequacy of just a general factor and no group > factors > The degrees of freedom for just the general factor are 27 and the fit is > 1.48 > The number of observations was 500 with Chi Square = 730.93 with prob < > 1.3e-136 > The root mean square of the residuals is 0.14 > The df corrected root mean square of the residuals is 0.16 > > RMSEA index = 0.23 and the 10 % confidence intervals are 0.214 0.243 > BIC = 563.14 > > Measures of factor score adequacy > g F1* F2* F3* > Correlation of scores with factors 0.86 0.73 0.72 0.75 > Multiple R square of scores with factors 0.74 0.54 0.51 0.57 > Minimum correlation of factor score estimates 0.49 0.07 0.03 0.13 > > Total, General and Subset omega for each subset > g F1* F2* F3* > Omega total for total scores and subscales 0.93 0.92 0.83 0.79 > Omega general for total scores and subscales 0.74 0.58 0.50 0.47 > Omega group for total scores and subscales 0.16 0.34 0.32 0.32 > > The following analyses were done using the lavaan package > > Omega Hierarchical from a confirmatory model using sem = 0.79 > Omega Total from a confirmatory model using sem = 0.93 > With loadings of > g F1* F2* F3* h2 u2 p2 > Sentences 0.77 0.49 0.83 0.17 0.71 > Vocabulary 0.79 0.45 0.83 0.17 0.75 > Sent.Completion 0.75 0.40 0.73 0.27 0.77 > First.Letters 0.61 0.61 0.75 0.25 0.50 > Four.Letter.Words 0.60 0.51 0.61 0.39 0.59 > Suffixes 0.57 0.39 0.48 0.52 0.68 > Letter.Series 0.57 0.73 0.85 0.15 0.38 > Pedigrees 0.66 0.25 0.50 0.50 0.87 > Letter.Group 0.53 0.41 0.45 0.55 0.62 > > With eigenvalues of: > g F1* F2* F3* > 3.87 0.60 0.79 0.76 > > The degrees of freedom of the confimatory model are 18 and the fit is > 57.11391 with p = 5.936744e-06 > general/max 4.92 max/min = 1.3 > mean percent general = 0.65 with sd = 0.15 and cv of 0.23 > Explained Common Variance of the general factor = 0.64 > > Measures of factor score adequacy > g F1* F2* F3* > Correlation of scores with factors 0.90 0.68 0.80 0.85 > Multiple R square of scores with factors 0.81 0.46 0.64 0.73 > Minimum correlation of factor score estimates 0.62 -0.08 0.27 0.45 > > Total, General and Subset omega for each subset > g F1* F2* F3* > Omega total for total scores and subscales 0.93 0.92 0.82 0.80 > Omega general for total scores and subscales 0.79 0.69 0.48 0.50 > Omega group for total scores and subscales 0.14 0.23 0.35 0.31 > > To get the standard sem fit statistics, ask for summary on the fitted > object> > ``` > > > > I'm expecting to have the same output applying the function directly. My > expectation is to make sure if its mandatory to make the schmid > transformation before the omegaSem(). I'm supposing that not, because its > not supposed to work like that as it says in the guide. Maybe this can be > solved correcting the error message: > > ``` > > r9 <- my.data > > omegaSem(r9,n.obs=198) > Error in parse(text = x, keep.source = FALSE) : > <text>:2:0: unexpected end of input > 1: ~ > ^ > ``` > Hope I've been clear enough. Feel free to ask any other information that > you might need. > > Thank you so much for giving me any guidance to reach the answer of this > issue. I higly appreciate any help. > > Regards, > > Danilo > > -- > Danilo E. Rodr?guez Zapata > Analista en Psicometr?a > CEBIAC > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
William Dunlap
2019-Aug-29 19:14 UTC
[R] R code: How to correct "Error in parse(text = x, keep.source = FALSE)" output in psych package using own dataset
Please use 'reply to all' for responses to R-help reponses. What do you get with your original data for psych::omega(my.data)$model$lavaan ? Any entries like "F3=~"? Bill Dunlap TIBCO Software wdunlap tibco.com On Thu, Aug 29, 2019 at 12:05 PM Danilo Esteban Rodriguez Zapata < danilo_rodriguez at cun.edu.co> wrote:> Dear William, > > Thank you for your answer, I would like to add some information that I > just obtained looking in different sites and forums. Someone there ask me > to create a fake data file, so I did that from my original data file. What > I did was open the .csv file with notepad and replace all the 4 for 5 and > the 2 for 1, then I saved the file again with no other changes. I also > searched for the "~" in the file and I found nothing. Now with that file I > did the omegaSem() function and it worked succesfully, so the weird thing > here is that the omegaSem() function works with the fake data file, wich is > exactly the same as the original file, but recoding some answers as I said. > > It seems to be an issue with the file. When I replace, lets say, the 5 for > 6 and make the omegaSem() again, it works. Then I replace back again the 6 > for 5 in all the data and the function doesn't works anymore. > > El jue., 29 ago. 2019 a las 12:33, William Dunlap (<wdunlap at tibco.com>) > escribi?: > >> > omegaSem(r9,n.obs=198) >> Error in parse(text = x, keep.source = FALSE) : >> <text>:2:0: unexpected end of input >> >> This error probably comes from calling factor("~") and >> psych::omegaSem(data) will do that if all the columns in data are very >> highly correlated with one another. In that case omega(data, nfactor=n) >> will not be able to find n factors in the data but it returns "~" in place >> of the factors that it could not find. E.g., >> > fakeData <- data.frame(A=1/(1:40), B=1/(2:41), C=1/(3:42), D=1/(4:43), >> E=1/(5:44)) >> > cor(fakeData) >> A B C D E >> A 1.0000000 0.9782320 0.9481293 0.9215071 0.8988962 >> B 0.9782320 1.0000000 0.9932037 0.9811287 0.9684658 >> C 0.9481293 0.9932037 1.0000000 0.9969157 0.9906838 >> D 0.9215071 0.9811287 0.9969157 1.0000000 0.9983014 >> E 0.8988962 0.9684658 0.9906838 0.9983014 1.0000000 >> > psych::omegaSem(fakeData) >> Loading required namespace: lavaan >> Loading required namespace: GPArotation >> In factor.stats, I could not find the RMSEA upper bound . Sorry about that >> Error in parse(text = x, keep.source = FALSE) : >> <text>:2:0: unexpected end of input >> 1: ~ >> ^ >> In addition: Warning message: >> In cov2cor(t(w) %*% r %*% w) : >> diag(.) had 0 or NA entries; non-finite result is doubtful >> > psych::omega(fakeData)$model$lavaan >> In factor.stats, I could not find the RMSEA upper bound . Sorry about that >> [1] g =~ +A+B+C+D+E F1=~ + B + C + D + E F2=~ + A >> [4] F3=~ >> Warning message: >> In cov2cor(t(w) %*% r %*% w) : >> diag(.) had 0 or NA entries; non-finite result is doubtful >> >> You can get a result if you use nfactors=n where n is the number of the >> good F<n> entries in psych::omega()$model$lavaan: >> > psych::omegaSem(fakeData, nfactors=2) >> ... >> >> Measures of factor score adequacy >> g F1* F2* >> Correlation of scores with factors 11.35 12.42 84.45 >> Multiple R square of scores with factors 128.93 154.32 7131.98 >> Minimum correlation of factor score estimates 256.86 307.64 14262.96 >> ... >> Does that work with your data? >> >> This is a problem that the maintainer of psych, >> > maintainer("psych") >> [1] "William Revelle <revelle at northwestern.edu>" >> would like to know about. >> >> >> >> >> >> >> Bill Dunlap >> TIBCO Software >> wdunlap tibco.com >> >> >> On Thu, Aug 29, 2019 at 9:03 AM Danilo Esteban Rodriguez Zapata via >> R-help <r-help at r-project.org> wrote: >> >>> This is a problem related to my last question referred to the omegaSem() >>> function in the psych package (that is already solved because I realized >>> that I was missing a variable assignment and because of that I had an >>> 'object not found' error: >>> >>> >>> https://stackoverflow.com/questions/57661750/one-of-the-omegasem-function-arguments-is-an-object-not-found >>> >>> I was trying to use that function following the guide to find McDonald's >>> hierarchical Omega by Dr William Revelle: >>> >>> http://personality-project.org/r/psych/HowTo/omega.pdf >>> >>> So now, with the variable error corrected, I'm having a different error >>> that does not occur when I use the same function with the example >>> database >>> (Thurstone) provided in the tutorial that comes with the psych package. I >>> mean, I'm able to use the function succesfully using the Thurstone data >>> (with no other action, I have the expected result) but the function >>> doesn't >>> work when I use my own data. >>> >>> I searched over other posted questions, and the actions that they perform >>> are not even similar to what I'm trying to do. I have almost two weeks >>> using R, so I'm not able to identify yet how can I extrapolate the >>> solutions for that error message to my procedure (because it seems to be >>> frequent), although I have basic code knowledge. However related >>> questions >>> give no anwer by now. >>> >>> Additionally, I decided to look over more documentation about the >>> package, >>> and when I was testing other functions, I was able to use the omegaSem() >>> function with another example database, BUT after and only after I did >>> the >>> schmid transformation. So with that, I discovered that when I tried to >>> use >>> the omegaSem() function before the schmid tranformation I had the same >>> error message, but not after that tranformation with this second example >>> database. >>> >>> This make sense with the actual procedure of the omegaSem() procedure, >>> but >>> I'm suposing that it must be done completely and automatically by the >>> omegaSem() function as it is explained in the guide and I have understood >>> until now, as it follows: >>> >>> 1. omegaSem() applies factor analysis >>> 2. omegaSem() rotate factors obliquely >>> 3. omegaSem() transform data with Schmid Leiman (schmid) >>> >>> -------necessary steps to print output------------------- >>> >>> 4. omegaSem() print McDonald's hierarchical Omega >>> >>> So here, another questions appears: - Why the omegaSem() function works >>> with the Thurstone database without any other action and only works for >>> the >>> second example database after performing the schmid transformation? - >>> Why >>> with other databases I dont have the same output applying the omegaSem() >>> function directly? - How is this related to the error message that the >>> compiler shows when I try to apply the function directly to the database? >>> >>> >>> This is the code that I'm using now: (example of the succesfull >>> omegaSem() >>> done after schmid tranformation not included) >>> >>> ``` >>> > library(psych) >>> > library(ctv, lavaan) >>> > library(GPArotation) >>> > my.data <- read.file() >>> Data from the .csv file >>> D:\Users\Admon\Documents\prueba_export_1563806208742.csv has been loaded. >>> > describe(my.data) >>> vars n mean sd median trimmed mad min max range skew >>> kurtosis >>> AUT_10_04 1 195 4.11 0.90 4 4.23 1.48 1 5 4 -0.92 >>> 0.33 >>> AUN_07_01 2 195 3.79 1.14 4 3.90 1.48 1 5 4 -0.59 >>> -0.71 >>> AUN_07_02 3 195 3.58 1.08 4 3.65 1.48 1 5 4 -0.39 >>> -0.56 >>> AUN_09_01 4 195 4.15 0.80 4 4.23 1.48 1 5 4 -0.76 >>> 0.51 >>> AUN_10_01 5 195 4.25 0.79 4 4.34 1.48 1 5 4 -0.91 >>> 0.74 >>> AUT_11_01 6 195 4.43 0.77 5 4.56 0.00 1 5 4 -1.69 >>> 3.77 >>> AUT_17_01 7 195 4.46 0.67 5 4.55 0.00 1 5 4 -1.34 >>> 2.96 >>> AUT_20_03 8 195 4.44 0.65 5 4.53 0.00 2 5 3 -0.84 >>> 0.12 >>> CRE_05_02 9 195 2.47 1.01 2 2.43 1.48 1 5 4 0.35 >>> -0.46 >>> CRE_07_04 10 195 2.42 1.08 2 2.34 1.48 1 5 4 0.51 >>> -0.43 >>> CRE_10_01 11 195 4.41 0.68 5 4.51 0.00 2 5 3 -0.79 >>> -0.12 >>> CRE_16_02 12 195 2.75 1.23 3 2.69 1.48 1 5 4 0.29 >>> -0.96 >>> EFEC_03_07 13 195 4.35 0.69 4 4.45 1.48 1 5 4 -0.95 >>> 1.59 >>> EFEC_05 14 195 4.53 0.59 5 4.60 0.00 3 5 2 -0.82 >>> -0.34 >>> EFEC_09_02 15 195 2.19 0.91 2 2.11 1.48 1 5 4 0.57 >>> -0.03 >>> EFEC_16_03 16 195 4.21 0.77 4 4.29 1.48 2 5 3 -0.71 >>> -0.04 >>> EVA_02_01 17 195 4.47 0.61 5 4.54 0.00 3 5 2 -0.70 >>> -0.50 >>> EVA_07_01 18 195 4.38 0.60 4 4.43 1.48 3 5 2 -0.40 >>> -0.70 >>> EVA_12_02 19 195 2.64 1.22 2 2.59 1.48 1 5 4 0.30 >>> -1.00 >>> EVA_15_06 20 195 4.19 0.74 4 4.26 1.48 2 5 3 -0.55 >>> -0.29 >>> FLX_04_01 21 195 4.32 0.69 4 4.41 1.48 2 5 3 -0.71 >>> 0.05 >>> FLX_04_05 22 195 4.23 0.74 4 4.32 0.00 1 5 4 -0.99 >>> 1.69 >>> FLX_08_02 23 195 2.87 1.19 3 2.86 1.48 1 5 4 0.07 >>> -1.05 >>> FLX_10_03 24 195 4.30 0.71 4 4.39 1.48 2 5 3 -0.84 >>> 0.66 >>> IDO_01_06 25 195 3.10 1.26 3 3.13 1.48 1 5 4 -0.19 >>> -1.08 >>> IDO_05_02 26 195 2.89 1.26 3 2.87 1.48 1 5 4 -0.03 >>> -1.16 >>> IDO_09_03 27 195 3.87 0.97 4 3.99 1.48 1 5 4 -0.84 >>> 0.47 >>> IDO_17_01 28 195 3.94 0.88 4 4.02 0.00 1 5 4 -0.93 >>> 1.23 >>> IE_01_03 29 195 4.01 0.88 4 4.10 1.48 1 5 4 -0.91 >>> 0.94 >>> IE_10_03 30 195 4.15 1.00 4 4.34 1.48 1 5 4 -1.31 >>> 1.28 >>> IE_13_03 31 195 4.16 0.91 4 4.30 1.48 1 5 4 -1.26 >>> 1.74 >>> IE_15_01 32 195 4.26 0.85 4 4.39 1.48 1 5 4 -1.16 >>> 1.08 >>> LC_07_03 33 195 4.25 0.72 4 4.34 0.00 1 5 4 -1.07 >>> 2.64 >>> LC_08_02 34 195 3.25 1.22 4 3.31 1.48 1 5 4 -0.41 >>> -0.90 >>> LC_11_03 35 195 3.50 1.14 4 3.56 1.48 1 5 4 -0.38 >>> -0.68 >>> LC_11_05 36 195 4.42 0.69 5 4.52 0.00 1 5 4 -1.14 >>> 1.97 >>> ME_02_03 37 195 4.11 0.92 4 4.25 1.48 1 5 4 -1.18 >>> 1.29 >>> ME_07_06 38 195 3.19 1.28 3 3.24 1.48 1 5 4 -0.28 >>> -1.03 >>> ME_09_01 39 195 4.24 0.77 4 4.34 1.48 1 5 4 -1.12 >>> 2.19 >>> ME_09_06 40 195 3.23 1.33 4 3.29 1.48 1 5 4 -0.31 >>> -1.14 >>> NEG_01_03 41 195 4.18 0.76 4 4.27 0.00 1 5 4 -1.28 >>> 3.33 >>> NEG_05_04 42 195 4.27 0.69 4 4.35 0.00 1 5 4 -0.87 >>> 1.75 >>> NEG_07_03 43 195 4.32 0.73 4 4.43 1.48 1 5 4 -1.05 >>> 1.55 >>> NEG_08_01 44 195 3.95 0.88 4 4.02 1.48 1 5 4 -0.67 >>> 0.29 >>> OP_03_05 45 195 4.32 0.66 4 4.39 0.00 1 5 4 -0.99 >>> 2.54 >>> OP_12_01 46 195 4.16 0.80 4 4.25 1.48 1 5 4 -1.02 >>> 1.57 >>> OP_14_01 47 195 4.27 0.78 4 4.38 1.48 1 5 4 -1.15 >>> 1.67 >>> OP_14_02 48 195 4.36 0.68 4 4.44 1.48 1 5 4 -1.07 >>> 2.35 >>> ORL_01_03 49 195 4.36 0.77 4 4.49 1.48 1 5 4 -1.31 >>> 2.08 >>> ORL_03_01 50 195 4.41 0.69 4 4.50 1.48 1 5 4 -1.28 >>> 2.77 >>> ORL_03_05 51 195 4.36 0.74 4 4.48 1.48 2 5 3 -1.13 >>> 1.28 >>> ORL_10_05 52 195 4.40 0.68 4 4.48 1.48 1 5 4 -1.18 >>> 2.57 >>> PER_08_02 53 195 3.23 1.29 4 3.29 1.48 1 5 4 -0.26 >>> -1.17 >>> PER_16_01 54 195 4.29 0.70 4 4.38 1.48 2 5 3 -0.74 >>> 0.27 >>> PER_19_06 55 195 3.19 1.25 3 3.24 1.48 1 5 4 -0.20 >>> -1.06 >>> PER_22_06 56 195 4.21 0.73 4 4.29 0.00 1 5 4 -0.89 >>> 1.46 >>> PLA_01_03 57 195 4.23 0.68 4 4.31 0.00 2 5 3 -0.81 >>> 1.18 >>> PLA_05_01 58 195 4.06 0.77 4 4.13 0.00 1 5 4 -0.89 >>> 1.29 >>> PLA_07_02 59 195 2.94 1.19 3 2.94 1.48 1 5 4 0.00 >>> -1.02 >>> PLA_10_01 60 195 4.03 0.76 4 4.08 0.00 1 5 4 -0.68 >>> 0.87 >>> PLA_12_02 61 195 2.67 1.11 2 2.62 1.48 1 5 4 0.41 >>> -0.61 >>> PLA_18_01 62 195 4.01 0.85 4 4.09 1.48 1 5 4 -0.82 >>> 0.78 >>> PR_06_02 63 195 3.02 1.27 3 3.02 1.48 1 5 4 -0.01 >>> -1.13 >>> PR_15_03 64 195 3.55 1.07 4 3.62 1.48 1 5 4 -0.46 >>> -0.22 >>> PR_25_01 65 195 2.36 1.04 2 2.27 1.48 1 5 4 0.73 >>> 0.06 >>> PR_25_06 66 195 2.95 1.17 3 2.94 1.48 1 5 4 0.04 >>> -0.86 >>> REL_09_05 67 195 3.81 0.95 4 3.89 1.48 1 5 4 -0.51 >>> -0.31 >>> REL_14_03 68 195 3.99 0.88 4 4.08 1.48 1 5 4 -0.75 >>> 0.39 >>> REL_14_06 69 195 2.93 1.26 3 2.92 1.48 1 5 4 0.06 >>> -1.11 >>> REL_16_04 70 195 3.16 1.27 3 3.20 1.48 1 5 4 -0.13 >>> -1.11 >>> RS_02_03 71 195 4.14 0.75 4 4.22 0.00 1 5 4 -0.82 >>> 1.14 >>> RS_07_05 72 195 4.29 0.67 4 4.38 0.00 2 5 3 -0.72 >>> 0.59 >>> RS_08_05 73 195 4.04 0.88 4 4.13 1.48 1 5 4 -0.97 >>> 1.26 >>> RS_13_03 74 195 4.19 0.69 4 4.25 0.00 2 5 3 -0.46 >>> -0.17 >>> TF_03_01 75 195 4.01 0.82 4 4.06 1.48 1 5 4 -0.63 >>> 0.32 >>> TF_04_01 76 195 4.09 0.76 4 4.15 0.00 1 5 4 -0.70 >>> 0.76 >>> TF_10_03 77 195 4.11 0.85 4 4.21 1.48 1 5 4 -0.96 >>> 0.99 >>> TF_12_01 78 195 4.11 0.85 4 4.21 1.48 1 5 4 -1.10 >>> 1.66 >>> TRE_09_05 79 195 4.29 0.79 4 4.39 1.48 1 5 4 -1.12 >>> 1.74 >>> TRE_09_06 80 195 4.33 0.69 4 4.42 1.48 1 5 4 -1.10 >>> 2.36 >>> TRE_26_04 81 195 2.97 1.20 3 2.96 1.48 1 5 4 0.08 >>> -1.01 >>> TRE_26_05 82 195 3.99 0.84 4 4.03 1.48 1 5 4 -0.41 >>> -0.37 >>> >>> ``` >>> >>> Until now, I have charged the libraries, import the my own database and >>> did >>> some simple descriptive statistics. >>> >>> ``` >>> >>> > r9 <- my.data >>> > omega(r9) >>> Omega >>> Call: omega(m = r9) >>> Alpha: 0.95 >>> G.6: 0.98 >>> Omega Hierarchical: 0.85 >>> Omega H asymptotic: 0.89 >>> Omega Total 0.96 >>> >>> Schmid Leiman Factor loadings greater than 0.2 >>> g F1* F2* F3* h2 u2 p2 >>> AUT_10_04 0.43 0.30 0.27 0.73 0.68 >>> AUN_07_01 0.05 0.95 0.53 >>> AUN_07_02 0.06 0.94 0.26 >>> AUN_09_01 0.38 0.30 0.24 0.76 0.59 >>> AUN_10_01 0.35 0.55 0.44 0.56 0.29 >>> AUT_11_01 0.42 0.30 0.27 0.73 0.66 >>> AUT_17_01 0.32 0.40 0.28 0.72 0.37 >>> AUT_20_03 0.41 0.25 0.24 0.76 0.73 >>> CRE_05_02- 0.24 -0.53 0.34 0.66 0.17 >>> CRE_07_04- 0.37 -0.51 0.39 0.61 0.35 >>> CRE_10_01 0.46 0.48 0.46 0.54 0.47 >>> CRE_16_02- -0.70 0.48 0.52 0.01 >>> EFEC_03_07 0.46 0.31 0.31 0.69 0.68 >>> EFEC_05 0.43 0.32 0.29 0.71 0.64 >>> EFEC_09_02- 0.29 -0.46 0.29 0.71 0.28 >>> EFEC_16_03 0.49 0.26 0.31 0.69 0.77 >>> EVA_02_01 0.55 0.21 0.36 0.64 0.85 >>> EVA_07_01 0.57 0.37 0.63 0.89 >>> EVA_12_02- -0.61 0.39 0.61 0.06 >>> EVA_15_06 0.50 0.37 0.39 0.61 0.65 >>> FLX_04_01 0.57 0.30 0.42 0.58 0.78 >>> FLX_04_05 0.52 0.26 0.34 0.66 0.80 >>> FLX_08_02- -0.78 0.60 0.40 0.00 >>> FLX_10_03 0.39 0.29 0.24 0.76 0.63 >>> IDO_01_06- -0.80 0.64 0.36 0.00 >>> IDO_05_02- -0.78 0.62 0.38 0.00 >>> IDO_09_03 0.41 0.49 0.42 0.58 0.40 >>> IDO_17_01 0.51 0.51 0.54 0.46 0.49 >>> IE_01_03 0.44 0.60 0.56 0.44 0.35 >>> IE_10_03 0.41 0.53 0.44 0.56 0.37 >>> IE_13_03 0.39 0.48 0.38 0.62 0.40 >>> IE_15_01 0.39 0.40 0.31 0.69 0.49 >>> LC_07_03 0.50 0.27 0.73 0.91 >>> LC_08_02 0.83 0.69 0.31 0.00 >>> LC_11_03 0.25 0.10 0.90 0.60 >>> LC_11_05 0.45 0.24 0.27 0.73 0.75 >>> ME_02_03 0.55 0.31 0.69 0.99 >>> ME_07_06 0.85 0.75 0.25 0.02 >>> ME_09_01 0.64 0.45 0.55 0.93 >>> ME_09_06 0.81 0.69 0.31 0.02 >>> NEG_01_03 0.58 0.20 0.38 0.62 0.88 >>> NEG_05_04 0.70 0.50 0.50 0.98 >>> NEG_07_03 0.64 0.43 0.57 0.96 >>> NEG_08_01 0.43 0.25 0.25 0.75 0.74 >>> OP_03_05 0.62 0.40 0.60 0.98 >>> OP_12_01 0.67 0.46 0.54 0.98 >>> OP_14_01 0.60 0.38 0.62 0.95 >>> OP_14_02 0.66 0.47 0.53 0.93 >>> ORL_01_03 0.67 0.47 0.53 0.96 >>> ORL_03_01 0.66 0.48 0.52 0.91 >>> ORL_03_05 0.64 0.46 0.54 0.90 >>> ORL_10_05 0.66 0.49 0.51 0.89 >>> PER_08_02 0.21 0.84 0.75 0.25 0.06 >>> PER_16_01 0.68 0.21 0.50 0.50 0.91 >>> PER_19_06 0.20 0.73 0.58 0.42 0.07 >>> PER_22_06 0.53 0.30 0.70 0.94 >>> PLA_01_03 0.57 0.36 0.64 0.89 >>> PLA_05_01 0.61 0.42 0.58 0.89 >>> PLA_07_02 0.75 0.61 0.39 0.04 >>> PLA_10_01 0.56 0.36 0.64 0.88 >>> PLA_12_02 0.61 0.37 0.63 0.00 >>> PLA_18_01 0.63 0.47 0.53 0.85 >>> PR_06_02 0.77 0.62 0.38 0.03 >>> PR_15_03 0.31 -0.39 0.24 0.31 0.69 0.31 >>> PR_25_01- -0.56 0.32 0.68 0.00 >>> PR_25_06 0.74 0.55 0.45 0.01 >>> REL_09_05 0.41 -0.23 0.38 0.37 0.63 0.45 >>> REL_14_03 0.41 -0.21 0.29 0.30 0.70 0.56 >>> REL_14_06 0.66 0.21 0.48 0.52 0.04 >>> REL_16_04 0.78 0.63 0.37 0.03 >>> RS_02_03 0.57 0.36 0.64 0.90 >>> RS_07_05 0.68 0.47 0.53 0.99 >>> RS_08_05 0.44 0.20 0.80 0.95 >>> RS_13_03 0.67 0.46 0.54 0.97 >>> TF_03_01 0.66 0.44 0.56 0.98 >>> TF_04_01 0.74 0.56 0.44 0.98 >>> TF_10_03 0.70 0.50 0.50 0.98 >>> TF_12_01 0.61 0.40 0.60 0.92 >>> TRE_09_05 0.70 0.23 0.55 0.45 0.89 >>> TRE_09_06 0.62 0.41 0.59 0.93 >>> TRE_26_04- -0.68 0.47 0.53 0.00 >>> TRE_26_05 0.55 -0.21 0.34 0.66 0.88 >>> >>> With eigenvalues of: >>> g F1* F2* F3* >>> 18.06 0.04 11.47 4.32 >>> >>> general/max 1.57 max/min = 267.1 >>> mean percent general = 0.58 with sd = 0.36 and cv of 0.63 >>> Explained Common Variance of the general factor = 0.53 >>> >>> The degrees of freedom are 3078 and the fit is 34.62 >>> The number of observations was 195 with Chi Square = 5671.12 with >>> prob >>> < 2.8e-157 >>> The root mean square of the residuals is 0.06 >>> The df corrected root mean square of the residuals is 0.06 >>> RMSEA index = 0.078 and the 10 % confidence intervals are 0.063 NA >>> BIC = -10559.18 >>> >>> Compare this with the adequacy of just a general factor and no group >>> factors >>> The degrees of freedom for just the general factor are 3239 and the fit >>> is >>> 51.52 >>> The number of observations was 195 with Chi Square = 8509.84 with >>> prob >>> < 0 >>> The root mean square of the residuals is 0.16 >>> The df corrected root mean square of the residuals is 0.16 >>> >>> RMSEA index = 0.104 and the 10 % confidence intervals are 0.089 NA >>> BIC = -8569.4 >>> >>> Measures of factor score adequacy >>> g F1* F2* F3* >>> Correlation of scores with factors 0.98 0.07 0.98 0.91 >>> Multiple R square of scores with factors 0.95 0.00 0.97 0.83 >>> Minimum correlation of factor score estimates 0.91 -0.99 0.94 0.66 >>> >>> Total, General and Subset omega for each subset >>> g F1* F2* F3* >>> Omega total for total scores and subscales 0.96 NA 0.83 0.95 >>> Omega general for total scores and subscales 0.85 NA 0.82 0.76 >>> Omega group for total scores and subscales 0.09 NA 0.01 0.19 >>> ``` >>> >>> Now, until here, I apply the basic (non hierarchical) omega() function to >>> my own database >>> >>> >>> ``` >>> > omegaSem(r9,n.obs=198) >>> Error in parse(text = x, keep.source = FALSE) : >>> <text>:2:0: unexpected end of input >>> 1: ~ >>> ``` >>> The previous is the error message that appears after trying to use the >>> omegaSem() function directly with my own database. >>> >>> Now, following, I present the expected output of omegaSem() applied >>> directly using the Thurstone database. It's similar to the output of the >>> basic omega() function but it has certain distinctions: >>> >>> ``` >>> >>> > r9 <- Thurstone >>> > omegaSem(r9,n.obs=500) >>> >>> Call: omegaSem(m = r9, n.obs = 500) >>> Omega >>> Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, >>> digits = digits, title = title, sl = sl, labels = labels, >>> plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option >>> option) >>> Alpha: 0.89 >>> G.6: 0.91 >>> Omega Hierarchical: 0.74 >>> Omega H asymptotic: 0.79 >>> Omega Total 0.93 >>> >>> Schmid Leiman Factor loadings greater than 0.2 >>> g F1* F2* F3* h2 u2 p2 >>> Sentences 0.71 0.56 0.82 0.18 0.61 >>> Vocabulary 0.73 0.55 0.84 0.16 0.63 >>> Sent.Completion 0.68 0.52 0.74 0.26 0.63 >>> First.Letters 0.65 0.56 0.73 0.27 0.57 >>> Four.Letter.Words 0.62 0.49 0.63 0.37 0.61 >>> Suffixes 0.56 0.41 0.50 0.50 0.63 >>> Letter.Series 0.59 0.62 0.73 0.27 0.48 >>> Pedigrees 0.58 0.24 0.34 0.51 0.49 0.66 >>> Letter.Group 0.54 0.46 0.52 0.48 0.56 >>> >>> With eigenvalues of: >>> g F1* F2* F3* >>> 3.58 0.96 0.74 0.72 >>> >>> general/max 3.73 max/min = 1.34 >>> mean percent general = 0.6 with sd = 0.05 and cv of 0.09 >>> Explained Common Variance of the general factor = 0.6 >>> >>> The degrees of freedom are 12 and the fit is 0.01 >>> The number of observations was 500 with Chi Square = 7.12 with prob < >>> 0.85 >>> The root mean square of the residuals is 0.01 >>> The df corrected root mean square of the residuals is 0.01 >>> RMSEA index = 0 and the 10 % confidence intervals are 0 0.026 >>> BIC = -67.45 >>> >>> Compare this with the adequacy of just a general factor and no group >>> factors >>> The degrees of freedom for just the general factor are 27 and the fit is >>> 1.48 >>> The number of observations was 500 with Chi Square = 730.93 with >>> prob < >>> 1.3e-136 >>> The root mean square of the residuals is 0.14 >>> The df corrected root mean square of the residuals is 0.16 >>> >>> RMSEA index = 0.23 and the 10 % confidence intervals are 0.214 0.243 >>> BIC = 563.14 >>> >>> Measures of factor score adequacy >>> g F1* F2* F3* >>> Correlation of scores with factors 0.86 0.73 0.72 0.75 >>> Multiple R square of scores with factors 0.74 0.54 0.51 0.57 >>> Minimum correlation of factor score estimates 0.49 0.07 0.03 0.13 >>> >>> Total, General and Subset omega for each subset >>> g F1* F2* F3* >>> Omega total for total scores and subscales 0.93 0.92 0.83 0.79 >>> Omega general for total scores and subscales 0.74 0.58 0.50 0.47 >>> Omega group for total scores and subscales 0.16 0.34 0.32 0.32 >>> >>> The following analyses were done using the lavaan package >>> >>> Omega Hierarchical from a confirmatory model using sem = 0.79 >>> Omega Total from a confirmatory model using sem = 0.93 >>> With loadings of >>> g F1* F2* F3* h2 u2 p2 >>> Sentences 0.77 0.49 0.83 0.17 0.71 >>> Vocabulary 0.79 0.45 0.83 0.17 0.75 >>> Sent.Completion 0.75 0.40 0.73 0.27 0.77 >>> First.Letters 0.61 0.61 0.75 0.25 0.50 >>> Four.Letter.Words 0.60 0.51 0.61 0.39 0.59 >>> Suffixes 0.57 0.39 0.48 0.52 0.68 >>> Letter.Series 0.57 0.73 0.85 0.15 0.38 >>> Pedigrees 0.66 0.25 0.50 0.50 0.87 >>> Letter.Group 0.53 0.41 0.45 0.55 0.62 >>> >>> With eigenvalues of: >>> g F1* F2* F3* >>> 3.87 0.60 0.79 0.76 >>> >>> The degrees of freedom of the confimatory model are 18 and the fit is >>> 57.11391 with p = 5.936744e-06 >>> general/max 4.92 max/min = 1.3 >>> mean percent general = 0.65 with sd = 0.15 and cv of 0.23 >>> Explained Common Variance of the general factor = 0.64 >>> >>> Measures of factor score adequacy >>> g F1* F2* F3* >>> Correlation of scores with factors 0.90 0.68 0.80 0.85 >>> Multiple R square of scores with factors 0.81 0.46 0.64 0.73 >>> Minimum correlation of factor score estimates 0.62 -0.08 0.27 0.45 >>> >>> Total, General and Subset omega for each subset >>> g F1* F2* F3* >>> Omega total for total scores and subscales 0.93 0.92 0.82 0.80 >>> Omega general for total scores and subscales 0.79 0.69 0.48 0.50 >>> Omega group for total scores and subscales 0.14 0.23 0.35 0.31 >>> >>> To get the standard sem fit statistics, ask for summary on the fitted >>> object> >>> ``` >>> >>> >>> >>> I'm expecting to have the same output applying the function directly. My >>> expectation is to make sure if its mandatory to make the schmid >>> transformation before the omegaSem(). I'm supposing that not, because its >>> not supposed to work like that as it says in the guide. Maybe this can be >>> solved correcting the error message: >>> >>> ``` >>> > r9 <- my.data >>> > omegaSem(r9,n.obs=198) >>> Error in parse(text = x, keep.source = FALSE) : >>> <text>:2:0: unexpected end of input >>> 1: ~ >>> ^ >>> ``` >>> Hope I've been clear enough. Feel free to ask any other information that >>> you might need. >>> >>> Thank you so much for giving me any guidance to reach the answer of this >>> issue. I higly appreciate any help. >>> >>> Regards, >>> >>> Danilo >>> >>> -- >>> Danilo E. Rodr?guez Zapata >>> Analista en Psicometr?a >>> CEBIAC >>> >>> [[alternative HTML version deleted]] >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >>> >> > > -- > Danilo E. Rodr?guez Zapata > Analista en Psicometr?a > CEBIAC >[[alternative HTML version deleted]]
Danilo Esteban Rodriguez Zapata
2019-Aug-29 19:29 UTC
[R] R code: How to correct "Error in parse(text = x, keep.source = FALSE)" output in psych package using own dataset
Dear William, Thank you for your answer, I would like to add some information that I just obtained looking in different sites and forums. Someone there ask me to create a fake data file, so I did that from my original data file. What I did was open the .csv file with notepad and replace all the 4 for 5 and the 2 for 1, then I saved the file again with no other changes. I also searched for the "~" in the file and I found nothing. Now with that file I did the omegaSem() function and it worked succesfully, so the weird thing here is that the omegaSem() function works with the fake data file, wich is exactly the same as the original file, but recoding some answers as I said. It seems to be an issue with the file. When I replace, lets say, the 5 for 6 and make the omegaSem() again, it works. Then I replace back again the 6 for 5 in all the data and the function doesn't works anymore. El jue., 29 ago. 2019 a las 12:33, William Dunlap (<wdunlap at tibco.com>) escribi?:> > omegaSem(r9,n.obs=198) > Error in parse(text = x, keep.source = FALSE) : > <text>:2:0: unexpected end of input > > This error probably comes from calling factor("~") and > psych::omegaSem(data) will do that if all the columns in data are very > highly correlated with one another. In that case omega(data, nfactor=n) > will not be able to find n factors in the data but it returns "~" in place > of the factors that it could not find. E.g., > > fakeData <- data.frame(A=1/(1:40), B=1/(2:41), C=1/(3:42), D=1/(4:43), > E=1/(5:44)) > > cor(fakeData) > A B C D E > A 1.0000000 0.9782320 0.9481293 0.9215071 0.8988962 > B 0.9782320 1.0000000 0.9932037 0.9811287 0.9684658 > C 0.9481293 0.9932037 1.0000000 0.9969157 0.9906838 > D 0.9215071 0.9811287 0.9969157 1.0000000 0.9983014 > E 0.8988962 0.9684658 0.9906838 0.9983014 1.0000000 > > psych::omegaSem(fakeData) > Loading required namespace: lavaan > Loading required namespace: GPArotation > In factor.stats, I could not find the RMSEA upper bound . Sorry about that > Error in parse(text = x, keep.source = FALSE) : > <text>:2:0: unexpected end of input > 1: ~ > ^ > In addition: Warning message: > In cov2cor(t(w) %*% r %*% w) : > diag(.) had 0 or NA entries; non-finite result is doubtful > > psych::omega(fakeData)$model$lavaan > In factor.stats, I could not find the RMSEA upper bound . Sorry about that > [1] g =~ +A+B+C+D+E F1=~ + B + C + D + E F2=~ + A > [4] F3=~ > Warning message: > In cov2cor(t(w) %*% r %*% w) : > diag(.) had 0 or NA entries; non-finite result is doubtful > > You can get a result if you use nfactors=n where n is the number of the > good F<n> entries in psych::omega()$model$lavaan: > > psych::omegaSem(fakeData, nfactors=2) > ... > > Measures of factor score adequacy > g F1* F2* > Correlation of scores with factors 11.35 12.42 84.45 > Multiple R square of scores with factors 128.93 154.32 7131.98 > Minimum correlation of factor score estimates 256.86 307.64 14262.96 > ... > Does that work with your data? > > This is a problem that the maintainer of psych, > > maintainer("psych") > [1] "William Revelle <revelle at northwestern.edu>" > would like to know about. > > > > > > > Bill Dunlap > TIBCO Software > wdunlap tibco.com > > > On Thu, Aug 29, 2019 at 9:03 AM Danilo Esteban Rodriguez Zapata via R-help > <r-help at r-project.org> wrote: > >> This is a problem related to my last question referred to the omegaSem() >> function in the psych package (that is already solved because I realized >> that I was missing a variable assignment and because of that I had an >> 'object not found' error: >> >> >> https://stackoverflow.com/questions/57661750/one-of-the-omegasem-function-arguments-is-an-object-not-found >> >> I was trying to use that function following the guide to find McDonald's >> hierarchical Omega by Dr William Revelle: >> >> http://personality-project.org/r/psych/HowTo/omega.pdf >> >> So now, with the variable error corrected, I'm having a different error >> that does not occur when I use the same function with the example database >> (Thurstone) provided in the tutorial that comes with the psych package. I >> mean, I'm able to use the function succesfully using the Thurstone data >> (with no other action, I have the expected result) but the function >> doesn't >> work when I use my own data. >> >> I searched over other posted questions, and the actions that they perform >> are not even similar to what I'm trying to do. I have almost two weeks >> using R, so I'm not able to identify yet how can I extrapolate the >> solutions for that error message to my procedure (because it seems to be >> frequent), although I have basic code knowledge. However related questions >> give no anwer by now. >> >> Additionally, I decided to look over more documentation about the package, >> and when I was testing other functions, I was able to use the omegaSem() >> function with another example database, BUT after and only after I did the >> schmid transformation. So with that, I discovered that when I tried to use >> the omegaSem() function before the schmid tranformation I had the same >> error message, but not after that tranformation with this second example >> database. >> >> This make sense with the actual procedure of the omegaSem() procedure, but >> I'm suposing that it must be done completely and automatically by the >> omegaSem() function as it is explained in the guide and I have understood >> until now, as it follows: >> >> 1. omegaSem() applies factor analysis >> 2. omegaSem() rotate factors obliquely >> 3. omegaSem() transform data with Schmid Leiman (schmid) >> >> -------necessary steps to print output------------------- >> >> 4. omegaSem() print McDonald's hierarchical Omega >> >> So here, another questions appears: - Why the omegaSem() function works >> with the Thurstone database without any other action and only works for >> the >> second example database after performing the schmid transformation? - Why >> with other databases I dont have the same output applying the omegaSem() >> function directly? - How is this related to the error message that the >> compiler shows when I try to apply the function directly to the database? >> >> >> This is the code that I'm using now: (example of the succesfull omegaSem() >> done after schmid tranformation not included) >> >> ``` >> > library(psych) >> > library(ctv, lavaan) >> > library(GPArotation) >> > my.data <- read.file() >> Data from the .csv file >> D:\Users\Admon\Documents\prueba_export_1563806208742.csv has been loaded. >> > describe(my.data) >> vars n mean sd median trimmed mad min max range skew >> kurtosis >> AUT_10_04 1 195 4.11 0.90 4 4.23 1.48 1 5 4 -0.92 >> 0.33 >> AUN_07_01 2 195 3.79 1.14 4 3.90 1.48 1 5 4 -0.59 >> -0.71 >> AUN_07_02 3 195 3.58 1.08 4 3.65 1.48 1 5 4 -0.39 >> -0.56 >> AUN_09_01 4 195 4.15 0.80 4 4.23 1.48 1 5 4 -0.76 >> 0.51 >> AUN_10_01 5 195 4.25 0.79 4 4.34 1.48 1 5 4 -0.91 >> 0.74 >> AUT_11_01 6 195 4.43 0.77 5 4.56 0.00 1 5 4 -1.69 >> 3.77 >> AUT_17_01 7 195 4.46 0.67 5 4.55 0.00 1 5 4 -1.34 >> 2.96 >> AUT_20_03 8 195 4.44 0.65 5 4.53 0.00 2 5 3 -0.84 >> 0.12 >> CRE_05_02 9 195 2.47 1.01 2 2.43 1.48 1 5 4 0.35 >> -0.46 >> CRE_07_04 10 195 2.42 1.08 2 2.34 1.48 1 5 4 0.51 >> -0.43 >> CRE_10_01 11 195 4.41 0.68 5 4.51 0.00 2 5 3 -0.79 >> -0.12 >> CRE_16_02 12 195 2.75 1.23 3 2.69 1.48 1 5 4 0.29 >> -0.96 >> EFEC_03_07 13 195 4.35 0.69 4 4.45 1.48 1 5 4 -0.95 >> 1.59 >> EFEC_05 14 195 4.53 0.59 5 4.60 0.00 3 5 2 -0.82 >> -0.34 >> EFEC_09_02 15 195 2.19 0.91 2 2.11 1.48 1 5 4 0.57 >> -0.03 >> EFEC_16_03 16 195 4.21 0.77 4 4.29 1.48 2 5 3 -0.71 >> -0.04 >> EVA_02_01 17 195 4.47 0.61 5 4.54 0.00 3 5 2 -0.70 >> -0.50 >> EVA_07_01 18 195 4.38 0.60 4 4.43 1.48 3 5 2 -0.40 >> -0.70 >> EVA_12_02 19 195 2.64 1.22 2 2.59 1.48 1 5 4 0.30 >> -1.00 >> EVA_15_06 20 195 4.19 0.74 4 4.26 1.48 2 5 3 -0.55 >> -0.29 >> FLX_04_01 21 195 4.32 0.69 4 4.41 1.48 2 5 3 -0.71 >> 0.05 >> FLX_04_05 22 195 4.23 0.74 4 4.32 0.00 1 5 4 -0.99 >> 1.69 >> FLX_08_02 23 195 2.87 1.19 3 2.86 1.48 1 5 4 0.07 >> -1.05 >> FLX_10_03 24 195 4.30 0.71 4 4.39 1.48 2 5 3 -0.84 >> 0.66 >> IDO_01_06 25 195 3.10 1.26 3 3.13 1.48 1 5 4 -0.19 >> -1.08 >> IDO_05_02 26 195 2.89 1.26 3 2.87 1.48 1 5 4 -0.03 >> -1.16 >> IDO_09_03 27 195 3.87 0.97 4 3.99 1.48 1 5 4 -0.84 >> 0.47 >> IDO_17_01 28 195 3.94 0.88 4 4.02 0.00 1 5 4 -0.93 >> 1.23 >> IE_01_03 29 195 4.01 0.88 4 4.10 1.48 1 5 4 -0.91 >> 0.94 >> IE_10_03 30 195 4.15 1.00 4 4.34 1.48 1 5 4 -1.31 >> 1.28 >> IE_13_03 31 195 4.16 0.91 4 4.30 1.48 1 5 4 -1.26 >> 1.74 >> IE_15_01 32 195 4.26 0.85 4 4.39 1.48 1 5 4 -1.16 >> 1.08 >> LC_07_03 33 195 4.25 0.72 4 4.34 0.00 1 5 4 -1.07 >> 2.64 >> LC_08_02 34 195 3.25 1.22 4 3.31 1.48 1 5 4 -0.41 >> -0.90 >> LC_11_03 35 195 3.50 1.14 4 3.56 1.48 1 5 4 -0.38 >> -0.68 >> LC_11_05 36 195 4.42 0.69 5 4.52 0.00 1 5 4 -1.14 >> 1.97 >> ME_02_03 37 195 4.11 0.92 4 4.25 1.48 1 5 4 -1.18 >> 1.29 >> ME_07_06 38 195 3.19 1.28 3 3.24 1.48 1 5 4 -0.28 >> -1.03 >> ME_09_01 39 195 4.24 0.77 4 4.34 1.48 1 5 4 -1.12 >> 2.19 >> ME_09_06 40 195 3.23 1.33 4 3.29 1.48 1 5 4 -0.31 >> -1.14 >> NEG_01_03 41 195 4.18 0.76 4 4.27 0.00 1 5 4 -1.28 >> 3.33 >> NEG_05_04 42 195 4.27 0.69 4 4.35 0.00 1 5 4 -0.87 >> 1.75 >> NEG_07_03 43 195 4.32 0.73 4 4.43 1.48 1 5 4 -1.05 >> 1.55 >> NEG_08_01 44 195 3.95 0.88 4 4.02 1.48 1 5 4 -0.67 >> 0.29 >> OP_03_05 45 195 4.32 0.66 4 4.39 0.00 1 5 4 -0.99 >> 2.54 >> OP_12_01 46 195 4.16 0.80 4 4.25 1.48 1 5 4 -1.02 >> 1.57 >> OP_14_01 47 195 4.27 0.78 4 4.38 1.48 1 5 4 -1.15 >> 1.67 >> OP_14_02 48 195 4.36 0.68 4 4.44 1.48 1 5 4 -1.07 >> 2.35 >> ORL_01_03 49 195 4.36 0.77 4 4.49 1.48 1 5 4 -1.31 >> 2.08 >> ORL_03_01 50 195 4.41 0.69 4 4.50 1.48 1 5 4 -1.28 >> 2.77 >> ORL_03_05 51 195 4.36 0.74 4 4.48 1.48 2 5 3 -1.13 >> 1.28 >> ORL_10_05 52 195 4.40 0.68 4 4.48 1.48 1 5 4 -1.18 >> 2.57 >> PER_08_02 53 195 3.23 1.29 4 3.29 1.48 1 5 4 -0.26 >> -1.17 >> PER_16_01 54 195 4.29 0.70 4 4.38 1.48 2 5 3 -0.74 >> 0.27 >> PER_19_06 55 195 3.19 1.25 3 3.24 1.48 1 5 4 -0.20 >> -1.06 >> PER_22_06 56 195 4.21 0.73 4 4.29 0.00 1 5 4 -0.89 >> 1.46 >> PLA_01_03 57 195 4.23 0.68 4 4.31 0.00 2 5 3 -0.81 >> 1.18 >> PLA_05_01 58 195 4.06 0.77 4 4.13 0.00 1 5 4 -0.89 >> 1.29 >> PLA_07_02 59 195 2.94 1.19 3 2.94 1.48 1 5 4 0.00 >> -1.02 >> PLA_10_01 60 195 4.03 0.76 4 4.08 0.00 1 5 4 -0.68 >> 0.87 >> PLA_12_02 61 195 2.67 1.11 2 2.62 1.48 1 5 4 0.41 >> -0.61 >> PLA_18_01 62 195 4.01 0.85 4 4.09 1.48 1 5 4 -0.82 >> 0.78 >> PR_06_02 63 195 3.02 1.27 3 3.02 1.48 1 5 4 -0.01 >> -1.13 >> PR_15_03 64 195 3.55 1.07 4 3.62 1.48 1 5 4 -0.46 >> -0.22 >> PR_25_01 65 195 2.36 1.04 2 2.27 1.48 1 5 4 0.73 >> 0.06 >> PR_25_06 66 195 2.95 1.17 3 2.94 1.48 1 5 4 0.04 >> -0.86 >> REL_09_05 67 195 3.81 0.95 4 3.89 1.48 1 5 4 -0.51 >> -0.31 >> REL_14_03 68 195 3.99 0.88 4 4.08 1.48 1 5 4 -0.75 >> 0.39 >> REL_14_06 69 195 2.93 1.26 3 2.92 1.48 1 5 4 0.06 >> -1.11 >> REL_16_04 70 195 3.16 1.27 3 3.20 1.48 1 5 4 -0.13 >> -1.11 >> RS_02_03 71 195 4.14 0.75 4 4.22 0.00 1 5 4 -0.82 >> 1.14 >> RS_07_05 72 195 4.29 0.67 4 4.38 0.00 2 5 3 -0.72 >> 0.59 >> RS_08_05 73 195 4.04 0.88 4 4.13 1.48 1 5 4 -0.97 >> 1.26 >> RS_13_03 74 195 4.19 0.69 4 4.25 0.00 2 5 3 -0.46 >> -0.17 >> TF_03_01 75 195 4.01 0.82 4 4.06 1.48 1 5 4 -0.63 >> 0.32 >> TF_04_01 76 195 4.09 0.76 4 4.15 0.00 1 5 4 -0.70 >> 0.76 >> TF_10_03 77 195 4.11 0.85 4 4.21 1.48 1 5 4 -0.96 >> 0.99 >> TF_12_01 78 195 4.11 0.85 4 4.21 1.48 1 5 4 -1.10 >> 1.66 >> TRE_09_05 79 195 4.29 0.79 4 4.39 1.48 1 5 4 -1.12 >> 1.74 >> TRE_09_06 80 195 4.33 0.69 4 4.42 1.48 1 5 4 -1.10 >> 2.36 >> TRE_26_04 81 195 2.97 1.20 3 2.96 1.48 1 5 4 0.08 >> -1.01 >> TRE_26_05 82 195 3.99 0.84 4 4.03 1.48 1 5 4 -0.41 >> -0.37 >> >> ``` >> >> Until now, I have charged the libraries, import the my own database and >> did >> some simple descriptive statistics. >> >> ``` >> >> > r9 <- my.data >> > omega(r9) >> Omega >> Call: omega(m = r9) >> Alpha: 0.95 >> G.6: 0.98 >> Omega Hierarchical: 0.85 >> Omega H asymptotic: 0.89 >> Omega Total 0.96 >> >> Schmid Leiman Factor loadings greater than 0.2 >> g F1* F2* F3* h2 u2 p2 >> AUT_10_04 0.43 0.30 0.27 0.73 0.68 >> AUN_07_01 0.05 0.95 0.53 >> AUN_07_02 0.06 0.94 0.26 >> AUN_09_01 0.38 0.30 0.24 0.76 0.59 >> AUN_10_01 0.35 0.55 0.44 0.56 0.29 >> AUT_11_01 0.42 0.30 0.27 0.73 0.66 >> AUT_17_01 0.32 0.40 0.28 0.72 0.37 >> AUT_20_03 0.41 0.25 0.24 0.76 0.73 >> CRE_05_02- 0.24 -0.53 0.34 0.66 0.17 >> CRE_07_04- 0.37 -0.51 0.39 0.61 0.35 >> CRE_10_01 0.46 0.48 0.46 0.54 0.47 >> CRE_16_02- -0.70 0.48 0.52 0.01 >> EFEC_03_07 0.46 0.31 0.31 0.69 0.68 >> EFEC_05 0.43 0.32 0.29 0.71 0.64 >> EFEC_09_02- 0.29 -0.46 0.29 0.71 0.28 >> EFEC_16_03 0.49 0.26 0.31 0.69 0.77 >> EVA_02_01 0.55 0.21 0.36 0.64 0.85 >> EVA_07_01 0.57 0.37 0.63 0.89 >> EVA_12_02- -0.61 0.39 0.61 0.06 >> EVA_15_06 0.50 0.37 0.39 0.61 0.65 >> FLX_04_01 0.57 0.30 0.42 0.58 0.78 >> FLX_04_05 0.52 0.26 0.34 0.66 0.80 >> FLX_08_02- -0.78 0.60 0.40 0.00 >> FLX_10_03 0.39 0.29 0.24 0.76 0.63 >> IDO_01_06- -0.80 0.64 0.36 0.00 >> IDO_05_02- -0.78 0.62 0.38 0.00 >> IDO_09_03 0.41 0.49 0.42 0.58 0.40 >> IDO_17_01 0.51 0.51 0.54 0.46 0.49 >> IE_01_03 0.44 0.60 0.56 0.44 0.35 >> IE_10_03 0.41 0.53 0.44 0.56 0.37 >> IE_13_03 0.39 0.48 0.38 0.62 0.40 >> IE_15_01 0.39 0.40 0.31 0.69 0.49 >> LC_07_03 0.50 0.27 0.73 0.91 >> LC_08_02 0.83 0.69 0.31 0.00 >> LC_11_03 0.25 0.10 0.90 0.60 >> LC_11_05 0.45 0.24 0.27 0.73 0.75 >> ME_02_03 0.55 0.31 0.69 0.99 >> ME_07_06 0.85 0.75 0.25 0.02 >> ME_09_01 0.64 0.45 0.55 0.93 >> ME_09_06 0.81 0.69 0.31 0.02 >> NEG_01_03 0.58 0.20 0.38 0.62 0.88 >> NEG_05_04 0.70 0.50 0.50 0.98 >> NEG_07_03 0.64 0.43 0.57 0.96 >> NEG_08_01 0.43 0.25 0.25 0.75 0.74 >> OP_03_05 0.62 0.40 0.60 0.98 >> OP_12_01 0.67 0.46 0.54 0.98 >> OP_14_01 0.60 0.38 0.62 0.95 >> OP_14_02 0.66 0.47 0.53 0.93 >> ORL_01_03 0.67 0.47 0.53 0.96 >> ORL_03_01 0.66 0.48 0.52 0.91 >> ORL_03_05 0.64 0.46 0.54 0.90 >> ORL_10_05 0.66 0.49 0.51 0.89 >> PER_08_02 0.21 0.84 0.75 0.25 0.06 >> PER_16_01 0.68 0.21 0.50 0.50 0.91 >> PER_19_06 0.20 0.73 0.58 0.42 0.07 >> PER_22_06 0.53 0.30 0.70 0.94 >> PLA_01_03 0.57 0.36 0.64 0.89 >> PLA_05_01 0.61 0.42 0.58 0.89 >> PLA_07_02 0.75 0.61 0.39 0.04 >> PLA_10_01 0.56 0.36 0.64 0.88 >> PLA_12_02 0.61 0.37 0.63 0.00 >> PLA_18_01 0.63 0.47 0.53 0.85 >> PR_06_02 0.77 0.62 0.38 0.03 >> PR_15_03 0.31 -0.39 0.24 0.31 0.69 0.31 >> PR_25_01- -0.56 0.32 0.68 0.00 >> PR_25_06 0.74 0.55 0.45 0.01 >> REL_09_05 0.41 -0.23 0.38 0.37 0.63 0.45 >> REL_14_03 0.41 -0.21 0.29 0.30 0.70 0.56 >> REL_14_06 0.66 0.21 0.48 0.52 0.04 >> REL_16_04 0.78 0.63 0.37 0.03 >> RS_02_03 0.57 0.36 0.64 0.90 >> RS_07_05 0.68 0.47 0.53 0.99 >> RS_08_05 0.44 0.20 0.80 0.95 >> RS_13_03 0.67 0.46 0.54 0.97 >> TF_03_01 0.66 0.44 0.56 0.98 >> TF_04_01 0.74 0.56 0.44 0.98 >> TF_10_03 0.70 0.50 0.50 0.98 >> TF_12_01 0.61 0.40 0.60 0.92 >> TRE_09_05 0.70 0.23 0.55 0.45 0.89 >> TRE_09_06 0.62 0.41 0.59 0.93 >> TRE_26_04- -0.68 0.47 0.53 0.00 >> TRE_26_05 0.55 -0.21 0.34 0.66 0.88 >> >> With eigenvalues of: >> g F1* F2* F3* >> 18.06 0.04 11.47 4.32 >> >> general/max 1.57 max/min = 267.1 >> mean percent general = 0.58 with sd = 0.36 and cv of 0.63 >> Explained Common Variance of the general factor = 0.53 >> >> The degrees of freedom are 3078 and the fit is 34.62 >> The number of observations was 195 with Chi Square = 5671.12 with prob >> < 2.8e-157 >> The root mean square of the residuals is 0.06 >> The df corrected root mean square of the residuals is 0.06 >> RMSEA index = 0.078 and the 10 % confidence intervals are 0.063 NA >> BIC = -10559.18 >> >> Compare this with the adequacy of just a general factor and no group >> factors >> The degrees of freedom for just the general factor are 3239 and the fit >> is >> 51.52 >> The number of observations was 195 with Chi Square = 8509.84 with prob >> < 0 >> The root mean square of the residuals is 0.16 >> The df corrected root mean square of the residuals is 0.16 >> >> RMSEA index = 0.104 and the 10 % confidence intervals are 0.089 NA >> BIC = -8569.4 >> >> Measures of factor score adequacy >> g F1* F2* F3* >> Correlation of scores with factors 0.98 0.07 0.98 0.91 >> Multiple R square of scores with factors 0.95 0.00 0.97 0.83 >> Minimum correlation of factor score estimates 0.91 -0.99 0.94 0.66 >> >> Total, General and Subset omega for each subset >> g F1* F2* F3* >> Omega total for total scores and subscales 0.96 NA 0.83 0.95 >> Omega general for total scores and subscales 0.85 NA 0.82 0.76 >> Omega group for total scores and subscales 0.09 NA 0.01 0.19 >> ``` >> >> Now, until here, I apply the basic (non hierarchical) omega() function to >> my own database >> >> >> ``` >> > omegaSem(r9,n.obs=198) >> Error in parse(text = x, keep.source = FALSE) : >> <text>:2:0: unexpected end of input >> 1: ~ >> ``` >> The previous is the error message that appears after trying to use the >> omegaSem() function directly with my own database. >> >> Now, following, I present the expected output of omegaSem() applied >> directly using the Thurstone database. It's similar to the output of the >> basic omega() function but it has certain distinctions: >> >> ``` >> >> > r9 <- Thurstone >> > omegaSem(r9,n.obs=500) >> >> Call: omegaSem(m = r9, n.obs = 500) >> Omega >> Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, >> digits = digits, title = title, sl = sl, labels = labels, >> plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option >> option) >> Alpha: 0.89 >> G.6: 0.91 >> Omega Hierarchical: 0.74 >> Omega H asymptotic: 0.79 >> Omega Total 0.93 >> >> Schmid Leiman Factor loadings greater than 0.2 >> g F1* F2* F3* h2 u2 p2 >> Sentences 0.71 0.56 0.82 0.18 0.61 >> Vocabulary 0.73 0.55 0.84 0.16 0.63 >> Sent.Completion 0.68 0.52 0.74 0.26 0.63 >> First.Letters 0.65 0.56 0.73 0.27 0.57 >> Four.Letter.Words 0.62 0.49 0.63 0.37 0.61 >> Suffixes 0.56 0.41 0.50 0.50 0.63 >> Letter.Series 0.59 0.62 0.73 0.27 0.48 >> Pedigrees 0.58 0.24 0.34 0.51 0.49 0.66 >> Letter.Group 0.54 0.46 0.52 0.48 0.56 >> >> With eigenvalues of: >> g F1* F2* F3* >> 3.58 0.96 0.74 0.72 >> >> general/max 3.73 max/min = 1.34 >> mean percent general = 0.6 with sd = 0.05 and cv of 0.09 >> Explained Common Variance of the general factor = 0.6 >> >> The degrees of freedom are 12 and the fit is 0.01 >> The number of observations was 500 with Chi Square = 7.12 with prob < >> 0.85 >> The root mean square of the residuals is 0.01 >> The df corrected root mean square of the residuals is 0.01 >> RMSEA index = 0 and the 10 % confidence intervals are 0 0.026 >> BIC = -67.45 >> >> Compare this with the adequacy of just a general factor and no group >> factors >> The degrees of freedom for just the general factor are 27 and the fit is >> 1.48 >> The number of observations was 500 with Chi Square = 730.93 with prob >> < >> 1.3e-136 >> The root mean square of the residuals is 0.14 >> The df corrected root mean square of the residuals is 0.16 >> >> RMSEA index = 0.23 and the 10 % confidence intervals are 0.214 0.243 >> BIC = 563.14 >> >> Measures of factor score adequacy >> g F1* F2* F3* >> Correlation of scores with factors 0.86 0.73 0.72 0.75 >> Multiple R square of scores with factors 0.74 0.54 0.51 0.57 >> Minimum correlation of factor score estimates 0.49 0.07 0.03 0.13 >> >> Total, General and Subset omega for each subset >> g F1* F2* F3* >> Omega total for total scores and subscales 0.93 0.92 0.83 0.79 >> Omega general for total scores and subscales 0.74 0.58 0.50 0.47 >> Omega group for total scores and subscales 0.16 0.34 0.32 0.32 >> >> The following analyses were done using the lavaan package >> >> Omega Hierarchical from a confirmatory model using sem = 0.79 >> Omega Total from a confirmatory model using sem = 0.93 >> With loadings of >> g F1* F2* F3* h2 u2 p2 >> Sentences 0.77 0.49 0.83 0.17 0.71 >> Vocabulary 0.79 0.45 0.83 0.17 0.75 >> Sent.Completion 0.75 0.40 0.73 0.27 0.77 >> First.Letters 0.61 0.61 0.75 0.25 0.50 >> Four.Letter.Words 0.60 0.51 0.61 0.39 0.59 >> Suffixes 0.57 0.39 0.48 0.52 0.68 >> Letter.Series 0.57 0.73 0.85 0.15 0.38 >> Pedigrees 0.66 0.25 0.50 0.50 0.87 >> Letter.Group 0.53 0.41 0.45 0.55 0.62 >> >> With eigenvalues of: >> g F1* F2* F3* >> 3.87 0.60 0.79 0.76 >> >> The degrees of freedom of the confimatory model are 18 and the fit is >> 57.11391 with p = 5.936744e-06 >> general/max 4.92 max/min = 1.3 >> mean percent general = 0.65 with sd = 0.15 and cv of 0.23 >> Explained Common Variance of the general factor = 0.64 >> >> Measures of factor score adequacy >> g F1* F2* F3* >> Correlation of scores with factors 0.90 0.68 0.80 0.85 >> Multiple R square of scores with factors 0.81 0.46 0.64 0.73 >> Minimum correlation of factor score estimates 0.62 -0.08 0.27 0.45 >> >> Total, General and Subset omega for each subset >> g F1* F2* F3* >> Omega total for total scores and subscales 0.93 0.92 0.82 0.80 >> Omega general for total scores and subscales 0.79 0.69 0.48 0.50 >> Omega group for total scores and subscales 0.14 0.23 0.35 0.31 >> >> To get the standard sem fit statistics, ask for summary on the fitted >> object> >> ``` >> >> >> >> I'm expecting to have the same output applying the function directly. My >> expectation is to make sure if its mandatory to make the schmid >> transformation before the omegaSem(). I'm supposing that not, because its >> not supposed to work like that as it says in the guide. Maybe this can be >> solved correcting the error message: >> >> ``` >> > r9 <- my.data >> > omegaSem(r9,n.obs=198) >> Error in parse(text = x, keep.source = FALSE) : >> <text>:2:0: unexpected end of input >> 1: ~ >> ^ >> ``` >> Hope I've been clear enough. Feel free to ask any other information that >> you might need. >> >> Thank you so much for giving me any guidance to reach the answer of this >> issue. I higly appreciate any help. >> >> Regards, >> >> Danilo >> >> -- >> Danilo E. Rodr?guez Zapata >> Analista en Psicometr?a >> CEBIAC >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> >-- Danilo E. Rodr?guez Zapata Analista en Psicometr?a CEBIAC [[alternative HTML version deleted]]