On Sat, Jun 04, 2005 at 08:00:45AM -0700, Ralph Giles wrote:
> The replay gain code has dos line endings in CVS, which causes problems
> for the Sun compiler, among others. Attached is a patch for the lazy,
> but it's probably easier to fix locally and commit.
Now with actual patch...
-r
-------------- next part --------------
Index: src/share/replaygain_analysis/replaygain_analysis.c
==================================================================RCS file:
/cvsroot/flac/flac/src/share/replaygain_analysis/replaygain_analysis.c,v
retrieving revision 1.1
diff -u -r1.1 replaygain_analysis.c
--- src/share/replaygain_analysis/replaygain_analysis.c 17 Dec 2003 04:51:07
-0000 1.1
+++ src/share/replaygain_analysis/replaygain_analysis.c 4 Jun 2005 14:23:23
-0000
@@ -1,413 +1,413 @@
-/*
- * ReplayGainAnalysis - analyzes input samples and give the recommended dB
change
- * Copyright (C) 2001 David Robinson and Glen Sawyer
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- * concept and filter values by David Robinson (David@Robinson.org)
- * -- blame him if you think the idea is flawed
- * original coding by Glen Sawyer (glensawyer@hotmail.com)
- * -- blame him if you think this runs too slowly, or the coding is
otherwise flawed
- *
- * lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/
)
- * -- credit him for all the _good_ programming ;)
- *
- * minor cosmetic tweaks to integrate with FLAC by Josh Coalson
- *
- *
- * For an explanation of the concepts and the basic algorithms involved, go
to:
- * http://www.replaygain.org/
- */
-
-/*
- * Here's the deal. Call
- *
- * InitGainAnalysis ( long samplefreq );
- *
- * to initialize everything. Call
- *
- * AnalyzeSamples ( const Float_t* left_samples,
- * const Float_t* right_samples,
- * size_t num_samples,
- * int num_channels );
- *
- * as many times as you want, with as many or as few samples as you want.
- * If mono, pass the sample buffer in through left_samples, leave
- * right_samples NULL, and make sure num_channels = 1.
- *
- * GetTitleGain()
- *
- * will return the recommended dB level change for all samples analyzed
- * SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
- *
- * GetAlbumGain()
- *
- * will return the recommended dB level change for all samples analyzed
- * since InitGainAnalysis() was called and finalized with GetTitleGain().
- *
- * Pseudo-code to process an album:
- *
- * Float_t l_samples [4096];
- * Float_t r_samples [4096];
- * size_t num_samples;
- * unsigned int num_songs;
- * unsigned int i;
- *
- * InitGainAnalysis ( 44100 );
- * for ( i = 1; i <= num_songs; i++ ) {
- * while ( ( num_samples = getSongSamples ( song[i], left_samples,
right_samples ) ) > 0 )
- * AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
- * fprintf ("Recommended dB change for song %2d: %+6.2f dB\n",
i, GetTitleGain() );
- * }
- * fprintf ("Recommended dB change for whole album: %+6.2f dB\n",
GetAlbumGain() );
- */
-
-/*
- * So here's the main source of potential code confusion:
- *
- * The filters applied to the incoming samples are IIR filters,
- * meaning they rely on up to <filter order> number of previous samples
- * AND up to <filter order> number of previous filtered samples.
- *
- * I set up the AnalyzeSamples routine to minimize memory usage and interface
- * complexity. The speed isn't compromised too much (I don't think),
but the
- * internal complexity is higher than it should be for such a relatively
- * simple routine.
- *
- * Optimization/clarity suggestions are welcome.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <math.h>
-
-#include "replaygain_analysis.h"
-
-typedef unsigned short Uint16_t;
-typedef signed short Int16_t;
-typedef unsigned int Uint32_t;
-typedef signed int Int32_t;
-
-#define YULE_ORDER 10
-#define BUTTER_ORDER 2
-#define RMS_PERCENTILE 0.95 /* percentile which is louder than the
proposed level */
-#define MAX_SAMP_FREQ 48000. /* maximum allowed sample frequency
[Hz] */
-#define RMS_WINDOW_TIME 0.050 /* Time slice size [s] */
-#define STEPS_per_dB 100. /* Table entries per dB */
-#define MAX_dB 120. /* Table entries for 0...MAX_dB (normal
max. values are 70...80 dB) */
-
-#define MAX_ORDER (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER :
YULE_ORDER)
-/* [JEC] the following was originally #defined as:
- * (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME)
- * but that seemed to fail to take into account the ceil() part of the
- * sampleWindow calculation in ResetSampleFrequency(), and was causing
- * buffer overflows for 48kHz analysis, hence the +1.
- */
-#define MAX_SAMPLES_PER_WINDOW (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1.)
/* max. Samples per Time slice */
-#define PINK_REF 64.82 /* 298640883795 */
/* calibration value */
-
-static Float_t linprebuf [MAX_ORDER * 2];
-static Float_t* linpre; /*
left input samples, with pre-buffer */
-static Float_t lstepbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
-static Float_t* lstep; /*
left "first step" (i.e. post first filter) samples */
-static Float_t loutbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
-static Float_t* lout; /*
left "out" (i.e. post second filter) samples */
-static Float_t rinprebuf [MAX_ORDER * 2];
-static Float_t* rinpre; /*
right input samples ... */
-static Float_t rstepbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
-static Float_t* rstep;
-static Float_t routbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
-static Float_t* rout;
-static unsigned int sampleWindow; /*
number of samples required to reach number of milliseconds required for RMS
window */
-static unsigned long totsamp;
-static double lsum;
-static double rsum;
-static int freqindex;
-static Uint32_t A [(size_t)(STEPS_per_dB * MAX_dB)];
-static Uint32_t B [(size_t)(STEPS_per_dB * MAX_dB)];
-
-/* for each filter:
- [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz,
[6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz */
-
-#ifdef WIN32
-#pragma warning ( disable : 4305 )
-#endif
-
-static const Float_t AYule [9] [11] = {
- { 1., -3.84664617118067, 7.81501653005538,-11.34170355132042,
13.05504219327545,-12.28759895145294, 9.48293806319790, -5.87257861775999,
2.75465861874613, -0.86984376593551, 0.13919314567432 },
- { 1., -3.47845948550071, 6.36317777566148, -8.54751527471874,
9.47693607801280, -8.81498681370155, 6.85401540936998, -4.39470996079559,
2.19611684890774, -0.75104302451432, 0.13149317958808 },
- { 1., -2.37898834973084, 2.84868151156327, -2.64577170229825,
2.23697657451713, -1.67148153367602, 1.00595954808547, -0.45953458054983,
0.16378164858596, -0.05032077717131, 0.02347897407020 },
- { 1., -1.61273165137247, 1.07977492259970, -0.25656257754070,
-0.16276719120440, -0.22638893773906, 0.39120800788284, -0.22138138954925,
0.04500235387352, 0.02005851806501, 0.00302439095741 },
- { 1., -1.49858979367799, 0.87350271418188, 0.12205022308084,
-0.80774944671438, 0.47854794562326, -0.12453458140019, -0.04067510197014,
0.08333755284107, -0.04237348025746, 0.02977207319925 },
- { 1., -0.62820619233671, 0.29661783706366, -0.37256372942400,
0.00213767857124, -0.42029820170918, 0.22199650564824, 0.00613424350682,
0.06747620744683, 0.05784820375801, 0.03222754072173 },
- { 1., -1.04800335126349, 0.29156311971249, -0.26806001042947,
0.00819999645858, 0.45054734505008, -0.33032403314006, 0.06739368333110,
-0.04784254229033, 0.01639907836189, 0.01807364323573 },
- { 1., -0.51035327095184, -0.31863563325245, -0.20256413484477,
0.14728154134330, 0.38952639978999, -0.23313271880868, -0.05246019024463,
-0.02505961724053, 0.02442357316099, 0.01818801111503 },
- { 1., -0.25049871956020, -0.43193942311114, -0.03424681017675,
-0.04678328784242, 0.26408300200955, 0.15113130533216, -0.17556493366449,
-0.18823009262115, 0.05477720428674, 0.04704409688120 }
-};
-
-static const Float_t BYule [9] [11] = {
- { 0.03857599435200, -0.02160367184185, -0.00123395316851,
-0.00009291677959, -0.01655260341619, 0.02161526843274, -0.02074045215285,
0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916 },
- { 0.05418656406430, -0.02911007808948, -0.00848709379851,
-0.00851165645469, -0.00834990904936, 0.02245293253339, -0.02596338512915,
0.01624864962975, -0.00240879051584, 0.00674613682247, -0.00187763777362 },
- { 0.15457299681924, -0.09331049056315, -0.06247880153653,
0.02163541888798, -0.05588393329856, 0.04781476674921, 0.00222312597743,
0.03174092540049, -0.01390589421898, 0.00651420667831, -0.00881362733839 },
- { 0.30296907319327, -0.22613988682123, -0.08587323730772,
0.03282930172664, -0.00915702933434, -0.02364141202522, -0.00584456039913,
0.06276101321749, -0.00000828086748, 0.00205861885564, -0.02950134983287 },
- { 0.33642304856132, -0.25572241425570, -0.11828570177555,
0.11921148675203, -0.07834489609479, -0.00469977914380, -0.00589500224440,
0.05724228140351, 0.00832043980773, -0.01635381384540, -0.01760176568150 },
- { 0.44915256608450, -0.14351757464547, -0.22784394429749,
-0.01419140100551, 0.04078262797139, -0.12398163381748, 0.04097565135648,
0.10478503600251, -0.01863887810927, -0.03193428438915, 0.00541907748707 },
- { 0.56619470757641, -0.75464456939302, 0.16242137742230,
0.16744243493672, -0.18901604199609, 0.30931782841830, -0.27562961986224,
0.00647310677246, 0.08647503780351, -0.03788984554840, -0.00588215443421 },
- { 0.58100494960553, -0.53174909058578, -0.14289799034253,
0.17520704835522, 0.02377945217615, 0.15558449135573, -0.25344790059353,
0.01628462406333, 0.06920467763959, -0.03721611395801, -0.00749618797172 },
- { 0.53648789255105, -0.42163034350696, -0.00275953611929,
0.04267842219415, -0.10214864179676, 0.14590772289388, -0.02459864859345,
-0.11202315195388, -0.04060034127000, 0.04788665548180, -0.02217936801134 }
-};
-
-static const Float_t AButter [9] [3] = {
- { 1., -1.97223372919527, 0.97261396931306 },
- { 1., -1.96977855582618, 0.97022847566350 },
- { 1., -1.95835380975398, 0.95920349965459 },
- { 1., -1.95002759149878, 0.95124613669835 },
- { 1., -1.94561023566527, 0.94705070426118 },
- { 1., -1.92783286977036, 0.93034775234268 },
- { 1., -1.91858953033784, 0.92177618768381 },
- { 1., -1.91542108074780, 0.91885558323625 },
- { 1., -1.88903307939452, 0.89487434461664 }
-};
-
-static const Float_t BButter [9] [3] = {
- { 0.98621192462708, -1.97242384925416, 0.98621192462708 },
- { 0.98500175787242, -1.97000351574484, 0.98500175787242 },
- { 0.97938932735214, -1.95877865470428, 0.97938932735214 },
- { 0.97531843204928, -1.95063686409857, 0.97531843204928 },
- { 0.97316523498161, -1.94633046996323, 0.97316523498161 },
- { 0.96454515552826, -1.92909031105652, 0.96454515552826 },
- { 0.96009142950541, -1.92018285901082, 0.96009142950541 },
- { 0.95856916599601, -1.91713833199203, 0.95856916599601 },
- { 0.94597685600279, -1.89195371200558, 0.94597685600279 }
-};
-
-#ifdef WIN32
-#pragma warning ( default : 4305 )
-#endif
-
-/* When calling this procedure, make sure that ip[-order] and op[-order] point
to real data! */
-
-static void
-filter ( const Float_t* input, Float_t* output, size_t nSamples, const Float_t*
a, const Float_t* b, size_t order )
-{
- double y;
- size_t i;
- size_t k;
-
- for ( i = 0; i < nSamples; i++ ) {
- y = input[i] * b[0];
- for ( k = 1; k <= order; k++ )
- y += input[i-k] * b[k] - output[i-k] * a[k];
- output[i] = (Float_t)y;
- }
-}
-
-/* returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if
not */
-
-int
-ResetSampleFrequency ( long samplefreq ) {
- int i;
-
- /* zero out initial values */
- for ( i = 0; i < MAX_ORDER; i++ )
- linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] =
routbuf[i] = 0.;
-
- switch ( (int)(samplefreq) ) {
- case 48000: freqindex = 0; break;
- case 44100: freqindex = 1; break;
- case 32000: freqindex = 2; break;
- case 24000: freqindex = 3; break;
- case 22050: freqindex = 4; break;
- case 16000: freqindex = 5; break;
- case 12000: freqindex = 6; break;
- case 11025: freqindex = 7; break;
- case 8000: freqindex = 8; break;
- default: return INIT_GAIN_ANALYSIS_ERROR;
- }
-
- sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);
-
- lsum = 0.;
- rsum = 0.;
- totsamp = 0;
-
- memset ( A, 0, sizeof(A) );
-
- return INIT_GAIN_ANALYSIS_OK;
-}
-
-int
-InitGainAnalysis ( long samplefreq )
-{
- if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
- return INIT_GAIN_ANALYSIS_ERROR;
- }
-
- linpre = linprebuf + MAX_ORDER;
- rinpre = rinprebuf + MAX_ORDER;
- lstep = lstepbuf + MAX_ORDER;
- rstep = rstepbuf + MAX_ORDER;
- lout = loutbuf + MAX_ORDER;
- rout = routbuf + MAX_ORDER;
-
- memset ( B, 0, sizeof(B) );
-
- return INIT_GAIN_ANALYSIS_OK;
-}
-
-/* returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not */
-
-int
-AnalyzeSamples ( const Float_t* left_samples, const Float_t* right_samples,
size_t num_samples, int num_channels )
-{
- const Float_t* curleft;
- const Float_t* curright;
- long batchsamples;
- long cursamples;
- long cursamplepos;
- int i;
-
- if ( num_samples == 0 )
- return GAIN_ANALYSIS_OK;
-
- cursamplepos = 0;
- batchsamples = num_samples;
-
- switch ( num_channels) {
- case 1: right_samples = left_samples;
- case 2: break;
- default: return GAIN_ANALYSIS_ERROR;
- }
-
- if ( num_samples < MAX_ORDER ) {
- memcpy ( linprebuf + MAX_ORDER, left_samples , num_samples *
sizeof(Float_t) );
- memcpy ( rinprebuf + MAX_ORDER, right_samples, num_samples *
sizeof(Float_t) );
- }
- else {
- memcpy ( linprebuf + MAX_ORDER, left_samples, MAX_ORDER *
sizeof(Float_t) );
- memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER *
sizeof(Float_t) );
- }
-
- while ( batchsamples > 0 ) {
- cursamples = batchsamples > (long)(sampleWindow-totsamp) ?
(long)(sampleWindow - totsamp) : batchsamples;
- if ( cursamplepos < MAX_ORDER ) {
- curleft = linpre+cursamplepos;
- curright = rinpre+cursamplepos;
- if (cursamples > MAX_ORDER - cursamplepos )
- cursamples = MAX_ORDER - cursamplepos;
- }
- else {
- curleft = left_samples + cursamplepos;
- curright = right_samples + cursamplepos;
- }
-
- filter ( curleft , lstep + totsamp, cursamples, AYule[freqindex],
BYule[freqindex], YULE_ORDER );
- filter ( curright, rstep + totsamp, cursamples, AYule[freqindex],
BYule[freqindex], YULE_ORDER );
-
- filter ( lstep + totsamp, lout + totsamp, cursamples,
AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
- filter ( rstep + totsamp, rout + totsamp, cursamples,
AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
-
- for ( i = 0; i < cursamples; i++ ) { /* Get the squared
values */
- lsum += lout [totsamp+i] * lout [totsamp+i];
- rsum += rout [totsamp+i] * rout [totsamp+i];
- }
-
- batchsamples -= cursamples;
- cursamplepos += cursamples;
- totsamp += cursamples;
- if ( totsamp == sampleWindow ) { /* Get the Root Mean Square (RMS) for
this set of samples */
- double val = STEPS_per_dB * 10. * log10 ( (lsum+rsum) / totsamp *
0.5 + 1.e-37 );
- int ival = (int) val;
- if ( ival < 0 ) ival = 0;
- if ( ival >= (int)(sizeof(A)/sizeof(*A)) ) ival =
(int)(sizeof(A)/sizeof(*A)) - 1;
- A [ival]++;
- lsum = rsum = 0.;
- memmove ( loutbuf , loutbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
- memmove ( routbuf , routbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
- memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
- memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
- totsamp = 0;
- }
- if ( totsamp > sampleWindow ) /* somehow I really screwed up:
Error in programming! Contact author about totsamp > sampleWindow */
- return GAIN_ANALYSIS_ERROR;
- }
- if ( num_samples < MAX_ORDER ) {
- memmove ( linprebuf, linprebuf + num_samples,
(MAX_ORDER-num_samples) * sizeof(Float_t) );
- memmove ( rinprebuf, rinprebuf + num_samples,
(MAX_ORDER-num_samples) * sizeof(Float_t) );
- memcpy ( linprebuf + MAX_ORDER - num_samples, left_samples,
num_samples * sizeof(Float_t) );
- memcpy ( rinprebuf + MAX_ORDER - num_samples, right_samples,
num_samples * sizeof(Float_t) );
- }
- else {
- memcpy ( linprebuf, left_samples + num_samples - MAX_ORDER, MAX_ORDER
* sizeof(Float_t) );
- memcpy ( rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER
* sizeof(Float_t) );
- }
-
- return GAIN_ANALYSIS_OK;
-}
-
-
-static Float_t
-analyzeResult ( Uint32_t* Array, size_t len )
-{
- Uint32_t elems;
- Int32_t upper;
- size_t i;
-
- elems = 0;
- for ( i = 0; i < len; i++ )
- elems += Array[i];
- if ( elems == 0 )
- return GAIN_NOT_ENOUGH_SAMPLES;
-
- upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
- for ( i = len; i-- > 0; ) {
- if ( (upper -= Array[i]) <= 0 )
- break;
- }
-
- return (Float_t) ((Float_t)PINK_REF - (Float_t)i / (Float_t)STEPS_per_dB);
-}
-
-
-Float_t
-GetTitleGain ( void )
-{
- Float_t retval;
- unsigned int i;
-
- retval = analyzeResult ( A, sizeof(A)/sizeof(*A) );
-
- for ( i = 0; i < sizeof(A)/sizeof(*A); i++ ) {
- B[i] += A[i];
- A[i] = 0;
- }
-
- for ( i = 0; i < MAX_ORDER; i++ )
- linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] =
routbuf[i] = 0.f;
-
- totsamp = 0;
- lsum = rsum = 0.;
- return retval;
-}
-
-
-Float_t
-GetAlbumGain ( void )
-{
- return analyzeResult ( B, sizeof(B)/sizeof(*B) );
-}
-
-/* end of replaygain_analysis.c */
+/*
+ * ReplayGainAnalysis - analyzes input samples and give the recommended dB
change
+ * Copyright (C) 2001 David Robinson and Glen Sawyer
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * concept and filter values by David Robinson (David@Robinson.org)
+ * -- blame him if you think the idea is flawed
+ * original coding by Glen Sawyer (glensawyer@hotmail.com)
+ * -- blame him if you think this runs too slowly, or the coding is
otherwise flawed
+ *
+ * lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/
)
+ * -- credit him for all the _good_ programming ;)
+ *
+ * minor cosmetic tweaks to integrate with FLAC by Josh Coalson
+ *
+ *
+ * For an explanation of the concepts and the basic algorithms involved, go
to:
+ * http://www.replaygain.org/
+ */
+
+/*
+ * Here's the deal. Call
+ *
+ * InitGainAnalysis ( long samplefreq );
+ *
+ * to initialize everything. Call
+ *
+ * AnalyzeSamples ( const Float_t* left_samples,
+ * const Float_t* right_samples,
+ * size_t num_samples,
+ * int num_channels );
+ *
+ * as many times as you want, with as many or as few samples as you want.
+ * If mono, pass the sample buffer in through left_samples, leave
+ * right_samples NULL, and make sure num_channels = 1.
+ *
+ * GetTitleGain()
+ *
+ * will return the recommended dB level change for all samples analyzed
+ * SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
+ *
+ * GetAlbumGain()
+ *
+ * will return the recommended dB level change for all samples analyzed
+ * since InitGainAnalysis() was called and finalized with GetTitleGain().
+ *
+ * Pseudo-code to process an album:
+ *
+ * Float_t l_samples [4096];
+ * Float_t r_samples [4096];
+ * size_t num_samples;
+ * unsigned int num_songs;
+ * unsigned int i;
+ *
+ * InitGainAnalysis ( 44100 );
+ * for ( i = 1; i <= num_songs; i++ ) {
+ * while ( ( num_samples = getSongSamples ( song[i], left_samples,
right_samples ) ) > 0 )
+ * AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
+ * fprintf ("Recommended dB change for song %2d: %+6.2f dB\n",
i, GetTitleGain() );
+ * }
+ * fprintf ("Recommended dB change for whole album: %+6.2f dB\n",
GetAlbumGain() );
+ */
+
+/*
+ * So here's the main source of potential code confusion:
+ *
+ * The filters applied to the incoming samples are IIR filters,
+ * meaning they rely on up to <filter order> number of previous samples
+ * AND up to <filter order> number of previous filtered samples.
+ *
+ * I set up the AnalyzeSamples routine to minimize memory usage and interface
+ * complexity. The speed isn't compromised too much (I don't think),
but the
+ * internal complexity is higher than it should be for such a relatively
+ * simple routine.
+ *
+ * Optimization/clarity suggestions are welcome.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include "replaygain_analysis.h"
+
+typedef unsigned short Uint16_t;
+typedef signed short Int16_t;
+typedef unsigned int Uint32_t;
+typedef signed int Int32_t;
+
+#define YULE_ORDER 10
+#define BUTTER_ORDER 2
+#define RMS_PERCENTILE 0.95 /* percentile which is louder than the
proposed level */
+#define MAX_SAMP_FREQ 48000. /* maximum allowed sample frequency
[Hz] */
+#define RMS_WINDOW_TIME 0.050 /* Time slice size [s] */
+#define STEPS_per_dB 100. /* Table entries per dB */
+#define MAX_dB 120. /* Table entries for 0...MAX_dB (normal
max. values are 70...80 dB) */
+
+#define MAX_ORDER (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER :
YULE_ORDER)
+/* [JEC] the following was originally #defined as:
+ * (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME)
+ * but that seemed to fail to take into account the ceil() part of the
+ * sampleWindow calculation in ResetSampleFrequency(), and was causing
+ * buffer overflows for 48kHz analysis, hence the +1.
+ */
+#define MAX_SAMPLES_PER_WINDOW (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1.)
/* max. Samples per Time slice */
+#define PINK_REF 64.82 /* 298640883795 */
/* calibration value */
+
+static Float_t linprebuf [MAX_ORDER * 2];
+static Float_t* linpre; /*
left input samples, with pre-buffer */
+static Float_t lstepbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
+static Float_t* lstep; /*
left "first step" (i.e. post first filter) samples */
+static Float_t loutbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
+static Float_t* lout; /*
left "out" (i.e. post second filter) samples */
+static Float_t rinprebuf [MAX_ORDER * 2];
+static Float_t* rinpre; /*
right input samples ... */
+static Float_t rstepbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
+static Float_t* rstep;
+static Float_t routbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
+static Float_t* rout;
+static unsigned int sampleWindow; /*
number of samples required to reach number of milliseconds required for RMS
window */
+static unsigned long totsamp;
+static double lsum;
+static double rsum;
+static int freqindex;
+static Uint32_t A [(size_t)(STEPS_per_dB * MAX_dB)];
+static Uint32_t B [(size_t)(STEPS_per_dB * MAX_dB)];
+
+/* for each filter:
+ [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz,
[6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz */
+
+#ifdef WIN32
+#pragma warning ( disable : 4305 )
+#endif
+
+static const Float_t AYule [9] [11] = {
+ { 1., -3.84664617118067, 7.81501653005538,-11.34170355132042,
13.05504219327545,-12.28759895145294, 9.48293806319790, -5.87257861775999,
2.75465861874613, -0.86984376593551, 0.13919314567432 },
+ { 1., -3.47845948550071, 6.36317777566148, -8.54751527471874,
9.47693607801280, -8.81498681370155, 6.85401540936998, -4.39470996079559,
2.19611684890774, -0.75104302451432, 0.13149317958808 },
+ { 1., -2.37898834973084, 2.84868151156327, -2.64577170229825,
2.23697657451713, -1.67148153367602, 1.00595954808547, -0.45953458054983,
0.16378164858596, -0.05032077717131, 0.02347897407020 },
+ { 1., -1.61273165137247, 1.07977492259970, -0.25656257754070,
-0.16276719120440, -0.22638893773906, 0.39120800788284, -0.22138138954925,
0.04500235387352, 0.02005851806501, 0.00302439095741 },
+ { 1., -1.49858979367799, 0.87350271418188, 0.12205022308084,
-0.80774944671438, 0.47854794562326, -0.12453458140019, -0.04067510197014,
0.08333755284107, -0.04237348025746, 0.02977207319925 },
+ { 1., -0.62820619233671, 0.29661783706366, -0.37256372942400,
0.00213767857124, -0.42029820170918, 0.22199650564824, 0.00613424350682,
0.06747620744683, 0.05784820375801, 0.03222754072173 },
+ { 1., -1.04800335126349, 0.29156311971249, -0.26806001042947,
0.00819999645858, 0.45054734505008, -0.33032403314006, 0.06739368333110,
-0.04784254229033, 0.01639907836189, 0.01807364323573 },
+ { 1., -0.51035327095184, -0.31863563325245, -0.20256413484477,
0.14728154134330, 0.38952639978999, -0.23313271880868, -0.05246019024463,
-0.02505961724053, 0.02442357316099, 0.01818801111503 },
+ { 1., -0.25049871956020, -0.43193942311114, -0.03424681017675,
-0.04678328784242, 0.26408300200955, 0.15113130533216, -0.17556493366449,
-0.18823009262115, 0.05477720428674, 0.04704409688120 }
+};
+
+static const Float_t BYule [9] [11] = {
+ { 0.03857599435200, -0.02160367184185, -0.00123395316851,
-0.00009291677959, -0.01655260341619, 0.02161526843274, -0.02074045215285,
0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916 },
+ { 0.05418656406430, -0.02911007808948, -0.00848709379851,
-0.00851165645469, -0.00834990904936, 0.02245293253339, -0.02596338512915,
0.01624864962975, -0.00240879051584, 0.00674613682247, -0.00187763777362 },
+ { 0.15457299681924, -0.09331049056315, -0.06247880153653,
0.02163541888798, -0.05588393329856, 0.04781476674921, 0.00222312597743,
0.03174092540049, -0.01390589421898, 0.00651420667831, -0.00881362733839 },
+ { 0.30296907319327, -0.22613988682123, -0.08587323730772,
0.03282930172664, -0.00915702933434, -0.02364141202522, -0.00584456039913,
0.06276101321749, -0.00000828086748, 0.00205861885564, -0.02950134983287 },
+ { 0.33642304856132, -0.25572241425570, -0.11828570177555,
0.11921148675203, -0.07834489609479, -0.00469977914380, -0.00589500224440,
0.05724228140351, 0.00832043980773, -0.01635381384540, -0.01760176568150 },
+ { 0.44915256608450, -0.14351757464547, -0.22784394429749,
-0.01419140100551, 0.04078262797139, -0.12398163381748, 0.04097565135648,
0.10478503600251, -0.01863887810927, -0.03193428438915, 0.00541907748707 },
+ { 0.56619470757641, -0.75464456939302, 0.16242137742230,
0.16744243493672, -0.18901604199609, 0.30931782841830, -0.27562961986224,
0.00647310677246, 0.08647503780351, -0.03788984554840, -0.00588215443421 },
+ { 0.58100494960553, -0.53174909058578, -0.14289799034253,
0.17520704835522, 0.02377945217615, 0.15558449135573, -0.25344790059353,
0.01628462406333, 0.06920467763959, -0.03721611395801, -0.00749618797172 },
+ { 0.53648789255105, -0.42163034350696, -0.00275953611929,
0.04267842219415, -0.10214864179676, 0.14590772289388, -0.02459864859345,
-0.11202315195388, -0.04060034127000, 0.04788665548180, -0.02217936801134 }
+};
+
+static const Float_t AButter [9] [3] = {
+ { 1., -1.97223372919527, 0.97261396931306 },
+ { 1., -1.96977855582618, 0.97022847566350 },
+ { 1., -1.95835380975398, 0.95920349965459 },
+ { 1., -1.95002759149878, 0.95124613669835 },
+ { 1., -1.94561023566527, 0.94705070426118 },
+ { 1., -1.92783286977036, 0.93034775234268 },
+ { 1., -1.91858953033784, 0.92177618768381 },
+ { 1., -1.91542108074780, 0.91885558323625 },
+ { 1., -1.88903307939452, 0.89487434461664 }
+};
+
+static const Float_t BButter [9] [3] = {
+ { 0.98621192462708, -1.97242384925416, 0.98621192462708 },
+ { 0.98500175787242, -1.97000351574484, 0.98500175787242 },
+ { 0.97938932735214, -1.95877865470428, 0.97938932735214 },
+ { 0.97531843204928, -1.95063686409857, 0.97531843204928 },
+ { 0.97316523498161, -1.94633046996323, 0.97316523498161 },
+ { 0.96454515552826, -1.92909031105652, 0.96454515552826 },
+ { 0.96009142950541, -1.92018285901082, 0.96009142950541 },
+ { 0.95856916599601, -1.91713833199203, 0.95856916599601 },
+ { 0.94597685600279, -1.89195371200558, 0.94597685600279 }
+};
+
+#ifdef WIN32
+#pragma warning ( default : 4305 )
+#endif
+
+/* When calling this procedure, make sure that ip[-order] and op[-order] point
to real data! */
+
+static void
+filter ( const Float_t* input, Float_t* output, size_t nSamples, const Float_t*
a, const Float_t* b, size_t order )
+{
+ double y;
+ size_t i;
+ size_t k;
+
+ for ( i = 0; i < nSamples; i++ ) {
+ y = input[i] * b[0];
+ for ( k = 1; k <= order; k++ )
+ y += input[i-k] * b[k] - output[i-k] * a[k];
+ output[i] = (Float_t)y;
+ }
+}
+
+/* returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if
not */
+
+int
+ResetSampleFrequency ( long samplefreq ) {
+ int i;
+
+ /* zero out initial values */
+ for ( i = 0; i < MAX_ORDER; i++ )
+ linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] =
routbuf[i] = 0.;
+
+ switch ( (int)(samplefreq) ) {
+ case 48000: freqindex = 0; break;
+ case 44100: freqindex = 1; break;
+ case 32000: freqindex = 2; break;
+ case 24000: freqindex = 3; break;
+ case 22050: freqindex = 4; break;
+ case 16000: freqindex = 5; break;
+ case 12000: freqindex = 6; break;
+ case 11025: freqindex = 7; break;
+ case 8000: freqindex = 8; break;
+ default: return INIT_GAIN_ANALYSIS_ERROR;
+ }
+
+ sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);
+
+ lsum = 0.;
+ rsum = 0.;
+ totsamp = 0;
+
+ memset ( A, 0, sizeof(A) );
+
+ return INIT_GAIN_ANALYSIS_OK;
+}
+
+int
+InitGainAnalysis ( long samplefreq )
+{
+ if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
+ return INIT_GAIN_ANALYSIS_ERROR;
+ }
+
+ linpre = linprebuf + MAX_ORDER;
+ rinpre = rinprebuf + MAX_ORDER;
+ lstep = lstepbuf + MAX_ORDER;
+ rstep = rstepbuf + MAX_ORDER;
+ lout = loutbuf + MAX_ORDER;
+ rout = routbuf + MAX_ORDER;
+
+ memset ( B, 0, sizeof(B) );
+
+ return INIT_GAIN_ANALYSIS_OK;
+}
+
+/* returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not */
+
+int
+AnalyzeSamples ( const Float_t* left_samples, const Float_t* right_samples,
size_t num_samples, int num_channels )
+{
+ const Float_t* curleft;
+ const Float_t* curright;
+ long batchsamples;
+ long cursamples;
+ long cursamplepos;
+ int i;
+
+ if ( num_samples == 0 )
+ return GAIN_ANALYSIS_OK;
+
+ cursamplepos = 0;
+ batchsamples = num_samples;
+
+ switch ( num_channels) {
+ case 1: right_samples = left_samples;
+ case 2: break;
+ default: return GAIN_ANALYSIS_ERROR;
+ }
+
+ if ( num_samples < MAX_ORDER ) {
+ memcpy ( linprebuf + MAX_ORDER, left_samples , num_samples *
sizeof(Float_t) );
+ memcpy ( rinprebuf + MAX_ORDER, right_samples, num_samples *
sizeof(Float_t) );
+ }
+ else {
+ memcpy ( linprebuf + MAX_ORDER, left_samples, MAX_ORDER *
sizeof(Float_t) );
+ memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER *
sizeof(Float_t) );
+ }
+
+ while ( batchsamples > 0 ) {
+ cursamples = batchsamples > (long)(sampleWindow-totsamp) ?
(long)(sampleWindow - totsamp) : batchsamples;
+ if ( cursamplepos < MAX_ORDER ) {
+ curleft = linpre+cursamplepos;
+ curright = rinpre+cursamplepos;
+ if (cursamples > MAX_ORDER - cursamplepos )
+ cursamples = MAX_ORDER - cursamplepos;
+ }
+ else {
+ curleft = left_samples + cursamplepos;
+ curright = right_samples + cursamplepos;
+ }
+
+ filter ( curleft , lstep + totsamp, cursamples, AYule[freqindex],
BYule[freqindex], YULE_ORDER );
+ filter ( curright, rstep + totsamp, cursamples, AYule[freqindex],
BYule[freqindex], YULE_ORDER );
+
+ filter ( lstep + totsamp, lout + totsamp, cursamples,
AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
+ filter ( rstep + totsamp, rout + totsamp, cursamples,
AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
+
+ for ( i = 0; i < cursamples; i++ ) { /* Get the squared
values */
+ lsum += lout [totsamp+i] * lout [totsamp+i];
+ rsum += rout [totsamp+i] * rout [totsamp+i];
+ }
+
+ batchsamples -= cursamples;
+ cursamplepos += cursamples;
+ totsamp += cursamples;
+ if ( totsamp == sampleWindow ) { /* Get the Root Mean Square (RMS) for
this set of samples */
+ double val = STEPS_per_dB * 10. * log10 ( (lsum+rsum) / totsamp *
0.5 + 1.e-37 );
+ int ival = (int) val;
+ if ( ival < 0 ) ival = 0;
+ if ( ival >= (int)(sizeof(A)/sizeof(*A)) ) ival =
(int)(sizeof(A)/sizeof(*A)) - 1;
+ A [ival]++;
+ lsum = rsum = 0.;
+ memmove ( loutbuf , loutbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
+ memmove ( routbuf , routbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
+ memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
+ memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t)
);
+ totsamp = 0;
+ }
+ if ( totsamp > sampleWindow ) /* somehow I really screwed up:
Error in programming! Contact author about totsamp > sampleWindow */
+ return GAIN_ANALYSIS_ERROR;
+ }
+ if ( num_samples < MAX_ORDER ) {
+ memmove ( linprebuf, linprebuf + num_samples,
(MAX_ORDER-num_samples) * sizeof(Float_t) );
+ memmove ( rinprebuf, rinprebuf + num_samples,
(MAX_ORDER-num_samples) * sizeof(Float_t) );
+ memcpy ( linprebuf + MAX_ORDER - num_samples, left_samples,
num_samples * sizeof(Float_t) );
+ memcpy ( rinprebuf + MAX_ORDER - num_samples, right_samples,
num_samples * sizeof(Float_t) );
+ }
+ else {
+ memcpy ( linprebuf, left_samples + num_samples - MAX_ORDER, MAX_ORDER
* sizeof(Float_t) );
+ memcpy ( rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER
* sizeof(Float_t) );
+ }
+
+ return GAIN_ANALYSIS_OK;
+}
+
+
+static Float_t
+analyzeResult ( Uint32_t* Array, size_t len )
+{
+ Uint32_t elems;
+ Int32_t upper;
+ size_t i;
+
+ elems = 0;
+ for ( i = 0; i < len; i++ )
+ elems += Array[i];
+ if ( elems == 0 )
+ return GAIN_NOT_ENOUGH_SAMPLES;
+
+ upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
+ for ( i = len; i-- > 0; ) {
+ if ( (upper -= Array[i]) <= 0 )
+ break;
+ }
+
+ return (Float_t) ((Float_t)PINK_REF - (Float_t)i / (Float_t)STEPS_per_dB);
+}
+
+
+Float_t
+GetTitleGain ( void )
+{
+ Float_t retval;
+ unsigned int i;
+
+ retval = analyzeResult ( A, sizeof(A)/sizeof(*A) );
+
+ for ( i = 0; i < sizeof(A)/sizeof(*A); i++ ) {
+ B[i] += A[i];
+ A[i] = 0;
+ }
+
+ for ( i = 0; i < MAX_ORDER; i++ )
+ linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] =
routbuf[i] = 0.f;
+
+ totsamp = 0;
+ lsum = rsum = 0.;
+ return retval;
+}
+
+
+Float_t
+GetAlbumGain ( void )
+{
+ return analyzeResult ( B, sizeof(B)/sizeof(*B) );
+}
+
+/* end of replaygain_analysis.c */