Se ha borrado un adjunto en formato HTML... URL: <https://stat.ethz.ch/pipermail/r-help-es/attachments/20151210/04bc012e/attachment-0001.html>
Buenas Antonio, 
No termino de entender lo que dices, la verdad. 
Para ponernos en situación, lo que quiero es llegar al punto de pedido optimo,
es decir, no desabastecer el almacen, pero tampcoo tener cuchillas para 100
años...
Por ello, a mi me llega cuando necesitan una cuchilla, entonces se le da salida
en el almacen, pero esa cuchilla nunca retorna a nosotros, es colocada en la
maquina y hasta que parta.
Es por eso por lo que habia pensado en un tiempoo de vida o en frecuencias. No
me asusta meterme en "fregados" si la solución es robusta. Entiendo
que el tema de frecuencias podría valer, ya que al final no es más que la
frecuencia de pedido, pero lo que no me vale es usar medias, ya que la media de
0 y 2 es la misma que la de 1 y 1, pero las situaciones no tienen nada que ver.
Pongo un ejemplo.
Si hoy me piden 1 y dentro de una semana me piden 1, entonces con tener 1 en el
almacen me vale. La media de pedido sería 1 y el punto de pedido optimo seria 1.
Sin embargo, si esta seman me piden 0 y la semana siguiente me piden 2, el punto
de pedido optimo es 2, aunque la media de consumo es 1...
Por eso habia pensado en tiempo de vida que creoq ue se puede ajustar mejor,
pero no se como meter los datos para hacer correctamente el análisis.
To: r-help-es en r-project.org
From: antonio.punzon en st.ieo.es
Date: Thu, 10 Dec 2015 09:36:25 +0100
Subject: Re: [R-es] Tiempo de vida
  
    
  
  
    Si no tienes la fecha de venta o cuando se comenzó a usar lo tienes
    realmente difícil.
    Puedes hacer una aproximación si tuvieras cuantas se vendieron,
    identificando modas de venta y de devolución podrías estimar el
    tiempo de vida.
    Si solo tienes devolución puedes trabajar con modas/ frecuencias, el
    proceso es más complejo, bastante más. Sería algo parecido a
    averiguar la edad de un pez solo sabiendo cuando lo has cogido, sin
    saber fecha de nacimiento (pongo este ejemplo porque trabajo en
    biología marina). Y aunque no soy un experto en el tema (nada), el
    proceso de averiguar la "edad" es más complejo. Te diré que hay
    diversos métodos, y yo creo que el que más se ajusta sería con
    análisis de frecuencias. Pero no creo que te vayas a meter en ese
    "jardín"
    
    
    Pero, creo que estás haciendo mal la pregunta. Yo interpreto que lo
    que quieres saber es cuando debes hacer un pedid, para tener stock o
    previsiones de gasto. Esto solo depende de cuando se compraron. Pero
    esto te da lo mismo, incluso el tiempo de vida, ya que si es un
    producto estandarizado, será similar. Por lo tanto, solo tienes que
    hacer análisis de cuando te las traen de vuelta. Con cualquier
    análisis exploratorio por la unidad temporal que tu desees (Semana,
    mes, etc) te valdría. Por ejemplo unos boxplot
    
    El data frame sería muy simple
    
    kk<-
    data.frame(año=as.numeric(0),dia=as.numeric(0),mes=as.numeric(0))
    aquí meterías cada cuchilla que te devuelven
    o
    
    kk<-
data.frame(año=as.numeric(0),dia=as.numeric(0),mes=as.numeric(0),numero.cuchillas=as.numeric(0))
    aquí meterías el numero de cuchillas por día
    
    Del primero mediante un aggregate se obtiene el segundo
    
    Y después solo analizar
    
    Si los pedidos los hicieras por semanas, con la unión de los tres
    campos "dia, año, y me"s con la libreria "chron" los
transformas en
    un campo fecha (as.Date), y con la misma librería puedes sacar la
    semana de forma numérica. De esta forma tendrías las cuchillas por
    semana
    
    Poco más se me ocurre
    
    Espero que te sirva
    
    Saludos
    
    __________________________________
Antonio Punzón Merino
Instituto Español de Oceanografía
CO Santander
Promontorio de San Martín s/n
PO BOX 240
39080-Santander (Spain)
Tel: +34 942 29 17 16 (Direct: 55)
Fax: +34 942 275 072
Email: antonio.punzon en st.ieo.es
Web: www.ieo.es
__________________________________
    El 10/12/2015 a las 9:05, Jesús Para
      Fernández escribió:
    
    
      Siento insistir en el tema, pero es de vital importancia. 
Alguna idea???
Gracias
Jes?s
From: j.para.fernandez en hotmail.com
To: griera en yandex.com; r-help-es en r-project.org
Subject: RE: [R-es] Tiempo de vida
Date: Tue, 8 Dec 2015 09:18:11 +0100
Pero como har?a el data frame?? Porque las cuchillas son de la misma referencia.
En realidad es para ver cada cuanto se gstan las cuchillas y ver que pedidos hay
que hacer de las mismas.
La tabla que tengo es:
25 enero-> 1 cuchilla gastada
30 enero -> 1 cuchilla gastada
3 de febrero -> 2 cuchillas gastadas
5 de febrero -> 1 cuchilla gastada
Y as?....
No tiene necesariamente que ser gastada en la misma afeitadora, ya que hay 3
cortadoras y los datos de a que cortadora se cambian no son proporcionados y son
imposibles de conseguir (ya que esa informaci?n es de un externo).
Gracias. 
Jes?s
      
        Date: Mon, 7 Dec 2015 17:47:45 +0100
From: griera en yandex.com
To: j.para.fernandez en hotmail.com; r-help-es en r-project.org
Subject: Re: [R-es] Tiempo de vida
Hola:
On Mon, 7 Dec 2015 16:34:14 +0100
Jes?s Para Fern?ndez <j.para.fernandez en hotmail.com> wrote:
        
          Los datos no son de desgaste de cuchilla, sino de consumo de las
mismas.
Por ello tengo los datos de la siguiente forma:
Unidades cambiadas    Fecha
En unidades cambiadas, suele ser una y en fecha el dia que se hizo el cmabio. 
        
        No seria:
TIEMPO: Fecha que se coloca una cuchilla nueva hasta que se cambia.
ESTADO: Siempre 1 (siempre se cambia): no existen censuras.
y un registro para cada cuchilla.
Servir?a?
Saludos.
        
          Con eso no se muy bien como estructurar los datos para hacer el
an?lisis.
Gracias
Jes?s 
          
            Date: Mon, 7 Dec 2015 16:27:18 +0100
From: griera en yandex.com
To: j.para.fernandez en hotmail.com
CC: r-help-es en r-project.org
Subject: Re: [R-es] Tiempo de vida
Hola:
On Mon, 7 Dec 2015 15:12:24 +0100
Jes__s Para Fern__ndez <j.para.fernandez en hotmail.com> wrote:
            
              Buenas, 
Como pudeo calcular el tiempo de vida? Os cuento, tengo una serie de cuchillas y
quiero ver el consumo de las mismas y he pensado en hacer un estudio por tiempo
de vida. No se como hacerlo con R
            
            Has una tabla de datos con 4 columnas:
   
1. Fecha que se empieza a utilizar la cuchilla
2. Fecha de la ?ltima revisi?n de la cuchilla
3. TIEMPO: el tiempo transcurrido entre las dos fechas anteriores
4. ESTADO: estado de la cuchilla cuando se revis? la ?ltima vez:
    0 = Buen estado
    1 = Para tirar
Y utiliza el m?todo kaplan-meier:
library(survival)
KM <- survfit(Surv(DATO$TIEMPO, DATOS$ESTADO) ~ 1)
summary(KM)
plot(KM)
Un ejemplo:
            
              library(survival)
AML.KM <- survfit(Surv(aml$time, aml$status) ~ 1)
summary(AML.KM)
            
            Call: survfit(formula = Surv(aml$time, aml$status) ~ 1)
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
    5     23       2   0,9130  0,0588       0,8049        1,000
    8     21       2   0,8261  0,0790       0,6848        0,996
    9     19       1   0,7826  0,0860       0,6310        0,971
   12     18       1   0,7391  0,0916       0,5798        0,942
   13     17       1   0,6957  0,0959       0,5309        0,912
   18     14       1   0,6460  0,1011       0,4753        0,878
   23     13       2   0,5466  0,1073       0,3721        0,803
   27     11       1   0,4969  0,1084       0,3240        0,762
   30      9       1   0,4417  0,1095       0,2717        0,718
   31      8       1   0,3865  0,1089       0,2225        0,671
   33      7       1   0,3313  0,1064       0,1765        0,622
   34      6       1   0,2761  0,1020       0,1338        0,569
   43      5       1   0,2208  0,0954       0,0947        0,515
   45      4       1   0,1656  0,0860       0,0598        0,458
   48      2       1   0,0828  0,0727       0,0148        0,462
            
              plot(AML.KM)
            
            Dibuja la curva de supervivencia con el intervalo de confianza.
Espero que te sea ?til.
Saludos.
            
              Gracias
Jes_s
 		 	   		  
	[[alternative HTML version deleted]]
            
          
           		 	   		  
        
      
       		 	   		   		 	   		  
	[[alternative HTML version deleted]]
      
      
      
      _______________________________________________
R-help-es mailing list
R-help-es en r-project.org
https://stat.ethz.ch/mailman/listinfo/r-help-es
    
    
  
_______________________________________________
R-help-es mailing list
R-help-es en r-project.org
https://stat.ethz.ch/mailman/listinfo/r-help-es 		 	   		  
	[[alternative HTML version deleted]]
Hola Jesús,
La respuesta, desde mi punto de vista, es un poco off-topic de lo que se
trata en esta lista, pero comento como lo veo yo.
Con el nivel de detalle que tienes, puedes hacer varias cosas:
   - Simplemente mantén en tu almacén un número de cuchillas mayor que la
   última vez que tuviste que pedirlas con urgencia. En los entornos de
   Producción, efectivamente el que rompas el stock es una situación grave,
   porque paras la línea. Pero como bien, dices por otro lado no puedes
   mantener en tu almacén muchas cuchillas. Aunque también hay que comentar
   que en el análisis tendrías que meter el coste de reposición. No veo que
   las cuchillas sean un producto que se quede obsoleto, así que comprar un
   número mayor de "1" te sea hasta económicamente más rentable.
Seguramente
   puedas negociar mejores precios comprando "10" que "1".
      - Entonces por este lado, tener en tu almacén un número constante de
      "3". Y que ese sea tu punto de pedido no parece descabellado.
      - Otra forma de analizarlo teniendo en cuenta los datos que ya has
   acumulado es ver cuál es tu "MTTR" (Mean Time To Repair). Considera
la
   rotura/desgaste de la cuchilla como una "reparación". Y con este
concepto
   calcula el tiempo medio que pasa hasta que sustituyes una cuchilla. Esto lo
   puedes calcular con los datos que tienes, simplemente calculando las
   diferencias entre las fechas en las que cambias las cuchillas. De esta
   forma, obtendrás que si cambias cuchillas cada 2 semanas (en media),
   tendrás que tener en media, una cuchilla disponible en tu almacén.
   - Claro, si te ajustas al valor medio, pierdes toda la información que
      te da el MTTR de su sigma. Al calcular el MTTR, representa esas
diferencias
      en un histograma o simplemente calcula su sigma y tu stock óptimo
      (conservador) sería "Media + 3 Sigmas". Es una aproximación de
tirar por la
      calle del medio (suponiendo una distribución normal de los datos de MTTR).
      - En cualquier caso, cuando tengas los datos de MTTR, mira el
      histograma por si se puede hacer un análisis más fino.
Gracias,
Carlos Ortega
www.qualityexcellence.es
El 10 de diciembre de 2015, 9:57, Jesús Para Fernández <
j.para.fernandez en hotmail.com> escribió:
> Buenas Antonio,
>
> No termino de entender lo que dices, la verdad.
>
> Para ponernos en situación, lo que quiero es llegar al punto de pedido
> optimo, es decir, no desabastecer el almacen, pero tampcoo tener cuchillas
> para 100 años...
>
> Por ello, a mi me llega cuando necesitan una cuchilla, entonces se le da
> salida en el almacen, pero esa cuchilla nunca retorna a nosotros, es
> colocada en la maquina y hasta que parta.
>
> Es por eso por lo que habia pensado en un tiempoo de vida o en
> frecuencias. No me asusta meterme en "fregados" si la solución es
robusta.
> Entiendo que el tema de frecuencias podría valer, ya que al final no es más
> que la frecuencia de pedido, pero lo que no me vale es usar medias, ya que
> la media de 0 y 2 es la misma que la de 1 y 1, pero las situaciones no
> tienen nada que ver. Pongo un ejemplo.
>
> Si hoy me piden 1 y dentro de una semana me piden 1, entonces con tener 1
> en el almacen me vale. La media de pedido sería 1 y el punto de pedido
> optimo seria 1.
>
> Sin embargo, si esta seman me piden 0 y la semana siguiente me piden 2, el
> punto de pedido optimo es 2, aunque la media de consumo es 1...
>
> Por eso habia pensado en tiempo de vida que creoq ue se puede ajustar
> mejor, pero no se como meter los datos para hacer correctamente el
análisis.
>
> To: r-help-es en r-project.org
> From: antonio.punzon en st.ieo.es
> Date: Thu, 10 Dec 2015 09:36:25 +0100
> Subject: Re: [R-es] Tiempo de vida
>
>
>
>
>
>
>     Si no tienes la fecha de venta o cuando se comenzó a usar lo tienes
>     realmente difícil.
>
>     Puedes hacer una aproximación si tuvieras cuantas se vendieron,
>     identificando modas de venta y de devolución podrías estimar el
>     tiempo de vida.
>
>     Si solo tienes devolución puedes trabajar con modas/ frecuencias, el
>     proceso es más complejo, bastante más. Sería algo parecido a
>     averiguar la edad de un pez solo sabiendo cuando lo has cogido, sin
>     saber fecha de nacimiento (pongo este ejemplo porque trabajo en
>     biología marina). Y aunque no soy un experto en el tema (nada), el
>     proceso de averiguar la "edad" es más complejo. Te diré que
hay
>     diversos métodos, y yo creo que el que más se ajusta sería con
>     análisis de frecuencias. Pero no creo que te vayas a meter en ese
>     "jardín"
>
>
>
>
>
>     Pero, creo que estás haciendo mal la pregunta. Yo interpreto que lo
>     que quieres saber es cuando debes hacer un pedid, para tener stock o
>     previsiones de gasto. Esto solo depende de cuando se compraron. Pero
>     esto te da lo mismo, incluso el tiempo de vida, ya que si es un
>     producto estandarizado, será similar. Por lo tanto, solo tienes que
>     hacer análisis de cuando te las traen de vuelta. Con cualquier
>     análisis exploratorio por la unidad temporal que tu desees (Semana,
>     mes, etc) te valdría. Por ejemplo unos boxplot
>
>
>
>     El data frame sería muy simple
>
>
>
>     kk<-
>     data.frame(año=as.numeric(0),dia=as.numeric(0),mes=as.numeric(0))
>
>     aquí meterías cada cuchilla que te devuelven
>
>     o
>
>
>
>     kk<-
>
>
data.frame(año=as.numeric(0),dia=as.numeric(0),mes=as.numeric(0),numero.cuchillas=as.numeric(0))
>
>     aquí meterías el numero de cuchillas por día
>
>
>
>     Del primero mediante un aggregate se obtiene el segundo
>
>
>
>     Y después solo analizar
>
>
>
>     Si los pedidos los hicieras por semanas, con la unión de los tres
>     campos "dia, año, y me"s con la libreria "chron"
los transformas en
>     un campo fecha (as.Date), y con la misma librería puedes sacar la
>     semana de forma numérica. De esta forma tendrías las cuchillas por
>     semana
>
>
>
>     Poco más se me ocurre
>
>
>
>     Espero que te sirva
>
>
>
>     Saludos
>
>
>
>     __________________________________
> Antonio Punzón Merino
> Instituto Español de Oceanografía
> CO Santander
> Promontorio de San Martín s/n
> PO BOX 240
> 39080-Santander (Spain)
> Tel: +34 942 29 17 16 (Direct: 55)
> Fax: +34 942 275 072
> Email: antonio.punzon en st.ieo.es
> Web: www.ieo.es
> __________________________________
>
>     El 10/12/2015 a las 9:05, Jesús Para
>       Fernández escribió:
>
>
>
>       Siento insistir en el tema, pero es de vital importancia.
>
> Alguna idea???
>
> Gracias
> Jes?s
>
> From: j.para.fernandez en hotmail.com
> To: griera en yandex.com; r-help-es en r-project.org
> Subject: RE: [R-es] Tiempo de vida
> Date: Tue, 8 Dec 2015 09:18:11 +0100
>
>
>
>
> Pero como har?a el data frame?? Porque las cuchillas son de la misma
> referencia. En realidad es para ver cada cuanto se gstan las cuchillas y
> ver que pedidos hay que hacer de las mismas.
>
> La tabla que tengo es:
>
> 25 enero-> 1 cuchilla gastada
> 30 enero -> 1 cuchilla gastada
> 3 de febrero -> 2 cuchillas gastadas
> 5 de febrero -> 1 cuchilla gastada
>
> Y as?....
>
> No tiene necesariamente que ser gastada en la misma afeitadora, ya que hay
> 3 cortadoras y los datos de a que cortadora se cambian no son
> proporcionados y son imposibles de conseguir (ya que esa informaci?n es de
> un externo).
>
> Gracias.
> Jes?s
>
>
>
>         Date: Mon, 7 Dec 2015 17:47:45 +0100
> From: griera en yandex.com
> To: j.para.fernandez en hotmail.com; r-help-es en r-project.org
> Subject: Re: [R-es] Tiempo de vida
>
> Hola:
>
> On Mon, 7 Dec 2015 16:34:14 +0100
> Jes?s Para Fern?ndez <j.para.fernandez en hotmail.com> wrote:
>
>
>
>           Los datos no son de desgaste de cuchilla, sino de consumo de las
> mismas.
>
> Por ello tengo los datos de la siguiente forma:
>
> Unidades cambiadas    Fecha
>
>
> En unidades cambiadas, suele ser una y en fecha el dia que se hizo el
> cmabio.
>
>
>         No seria:
>
> TIEMPO: Fecha que se coloca una cuchilla nueva hasta que se cambia.
> ESTADO: Siempre 1 (siempre se cambia): no existen censuras.
>
> y un registro para cada cuchilla.
>
> Servir?a?
>
> Saludos.
>
>
>
>           Con eso no se muy bien como estructurar los datos para hacer el
> an?lisis.
>
> Gracias
> Jes?s
>
>
>
>
>
>             Date: Mon, 7 Dec 2015 16:27:18 +0100
> From: griera en yandex.com
> To: j.para.fernandez en hotmail.com
> CC: r-help-es en r-project.org
> Subject: Re: [R-es] Tiempo de vida
>
> Hola:
>
> On Mon, 7 Dec 2015 15:12:24 +0100
> Jes__s Para Fern__ndez <j.para.fernandez en hotmail.com> wrote:
>
>
>
>               Buenas,
>
> Como pudeo calcular el tiempo de vida? Os cuento, tengo una serie de
> cuchillas y quiero ver el consumo de las mismas y he pensado en hacer un
> estudio por tiempo de vida. No se como hacerlo con R
>
>
>             Has una tabla de datos con 4 columnas:
>
> 1. Fecha que se empieza a utilizar la cuchilla
> 2. Fecha de la ?ltima revisi?n de la cuchilla
> 3. TIEMPO: el tiempo transcurrido entre las dos fechas anteriores
> 4. ESTADO: estado de la cuchilla cuando se revis? la ?ltima vez:
>     0 = Buen estado
>     1 = Para tirar
>
> Y utiliza el m?todo kaplan-meier:
>
> library(survival)
> KM <- survfit(Surv(DATO$TIEMPO, DATOS$ESTADO) ~ 1)
> summary(KM)
> plot(KM)
>
> Un ejemplo:
>
>
>
>               library(survival)
> AML.KM <- survfit(Surv(aml$time, aml$status) ~ 1)
> summary(AML.KM)
>
>
>             Call: survfit(formula = Surv(aml$time, aml$status) ~ 1)
>
>  time n.risk n.event survival std.err lower 95% CI upper 95% CI
>     5     23       2   0,9130  0,0588       0,8049        1,000
>     8     21       2   0,8261  0,0790       0,6848        0,996
>     9     19       1   0,7826  0,0860       0,6310        0,971
>    12     18       1   0,7391  0,0916       0,5798        0,942
>    13     17       1   0,6957  0,0959       0,5309        0,912
>    18     14       1   0,6460  0,1011       0,4753        0,878
>    23     13       2   0,5466  0,1073       0,3721        0,803
>    27     11       1   0,4969  0,1084       0,3240        0,762
>    30      9       1   0,4417  0,1095       0,2717        0,718
>    31      8       1   0,3865  0,1089       0,2225        0,671
>    33      7       1   0,3313  0,1064       0,1765        0,622
>    34      6       1   0,2761  0,1020       0,1338        0,569
>    43      5       1   0,2208  0,0954       0,0947        0,515
>    45      4       1   0,1656  0,0860       0,0598        0,458
>    48      2       1   0,0828  0,0727       0,0148        0,462
>
>
>               plot(AML.KM)
>
>
>             Dibuja la curva de supervivencia con el intervalo de confianza.
>
> Espero que te sea ?til.
>
> Saludos.
>
>
>
>
>
>
>               Gracias
> Jes_s
>
>         [[alternative HTML version deleted]]
>
>
>
>
>
>
>
>
>
>         [[alternative HTML version deleted]]
>
>
>
>
>
>
>
>       _______________________________________________
> R-help-es mailing list
> R-help-es en r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-help-es
>
>
>
>
>
>
>
> _______________________________________________
> R-help-es mailing list
> R-help-es en r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-help-es
>         [[alternative HTML version deleted]]
>
> _______________________________________________
> R-help-es mailing list
> R-help-es en r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-help-es
>
-- 
Saludos,
Carlos Ortega
www.qualityexcellence.es
	[[alternative HTML version deleted]]
Hola Jesús,
     Yo estaría de acuerdo con Antonio. Si no tienes información no vas 
a poder hacer milagros (por lo que dices solo tienes una variable con 
una componente temporal).
     Podrías tratarlo como una serie temporal (habría que modelar la 
dependencia), pero supongo que lo más cómodo es considerar el nº de 
cuchillas por unidad de tiempo (i.e. agregar la serie temporal, aunque 
aún podría haber dependencia, especialmente si la unidad temporal es 
pequeña...). Se trataría de modelar la distribución de esta variable 
(empezaría por hacer un histograma) y por ejemplo estimar el percentil 
95 (que serían las cuchillas que deberías tener en stock para cubrir el 
95% de las unidades de tiempo).
     Espero que sirva de alguna ayuda...
     Un saludo, Rubén.