similar to: smooth functions

Displaying 20 results from an estimated 9000 matches similar to: "smooth functions"

2012 Jul 14
1
GAM Chi-Square Difference Test
We are using GAM in mgcv (Wood), relatively new users, and wonder if anyone can advise us on a problem we are encountering as we analyze many short time series datasets. For each dataset, we have four models, each with intercept, predictor x (trend), z (treatment), and int (interaction between x and z). Our models are Model 1: gama1.1 <- gam(y~x+z+int, family=quasipoisson) ##no smooths Model
2012 May 08
2
mgcv: inclusion of random intercept in model - based on p-value of smooth or anova?
Dear useRs, I am using mgcv version 1.7-16. When I create a model with a few non-linear terms and a random intercept for (in my case) country using s(Country,bs="re"), the representative line in my model (i.e. approximate significance of smooth terms) for the random intercept reads: edf Ref.df F p-value s(Country) 36.127 58.551 0.644
2004 Jun 16
2
gam
hi, i'm working with mgcv packages and specially gam. My exemple is: >test<-gam(B~s(pred1)+s(pred2)) >plot(test,pages=1) when ploting test, you can view pred1 vs s(pred1, edf[1] ) & pred2 vs s(pred2, edf[2] ) I would like to know if there is a way to access to those terms (s(pred1) & s(pred2)). Does someone know how? the purpose is to access to equation of smooths terms
2012 May 29
1
GAM interactions, by example
Dear all, I'm using the mgcv library by Simon Wood to fit gam models with interactions and I have been reading (and running) the "factor 'by' variable example" given on the gam.models help page (see below, output from the two first models b, and b1). The example explains that both b and b1 fits are similar: "note that the preceding fit (here b) is the same as
2005 Sep 23
1
Smooth terms significance in GAM models
hi, i'm using gam() function from package mgcv with default option (edf estimated by GCV). >G=gam(y ~ s(x0, k = 5) + s(x1) + s(x2, k = 3)) >SG=summary(G) Formula: y ~ +s(x0, k = 5) + s(x1) + s(x2, k = 3) Parametric coefficients: Estimate std. err. t ratio Pr(>|t|) (Intercept) 3.462e+07 1.965e+05 176.2 < 2.22e-16 Approximate significance of smooth
2008 Mar 31
1
unexpected GAM result - at least for me!
Hi I am afraid i am not understanding something very fundamental.... and does not matter how much i am looking into the book "Generalized Additive Models" of S. Wood i still don't understand my result. I am trying to model presence / absence (presence = 1, absence = 0) of a species using some lidar metrics (i have 4 of these). I am using different models and such .... and when i
2010 Jan 26
1
AIC for comparing GLM(M) with (GAM(M)
Hello I'm analyzing a dichotomous dependent variable (dv) with more than 100 measurements (within-subjects variable: hours24) per subject and more than 100 subjects. The high number of measurements allows me to model more complex temporal trends. I would like to compare different models using GLM, GLMM, GAM and GAMM, basically do demonstrate the added value of GAMs/GAMMs relative to
2007 Jun 21
1
mgcv: lowest estimated degrees of freedom
Dear list, I do apologize if these are basic questions. I am fitting some GAM models using the mgcv package and following the model selection criteria proposed by Wood and Augustin (2002, Ecol. Model. 157, p. 157-177). One criterion to decide if a term should be dropped from a model is if the estimated degrees of freedom (EDF) for the term are close to their lower limit. What would be the
2005 Nov 23
1
1st derivative {mgcv} gam smooth
Dear R-hep, I'm trying to get the first derivative of a smooth from a gam model like: model<-gam(y~s(x,bs="cr", k=5)+z) and need the derivative: ds(x)/dx. Since coef(model) give me all the parameters, including the parameters of the basis, I just need the 1st derivative of the basis s(x).1, s(x).2, s(x).3, s(x).4. If the basis were generated with the function
2010 Jun 16
3
mgcv, testing gamm vs lme, which degrees of freedom?
Dear all, I am using the "mgcv" package by Simon Wood to estimate an additive mixed model in which I assume normal distribution for the residuals. I would like to test this model vs a standard parametric mixed model, such as the ones which are possible to estimate with "lme". Since the smoothing splines can be written as random effects, is it correct to use an (approximate)
2010 Apr 14
1
Selecting derivative order penalty for thin plate spline regression (GAM - mgcv)
Hi, I am using GAMs (package mgcv) to smooth event rates in a penalized regression setting and I was wondering if/how one can select the order of the derivative penalty. For my particular problem the order of the penalty (parameter "m" inside the "s" terms of the formula argument) appears to have a larger effect on the AIC/deviance of the estimated model than the
2010 May 28
1
Comparing and Interpreting GAMMs
Dear R users I have a question related to the interpretation of results based on GAMMs using Simon Woods package gamm4. I have repeated measurements (hours24) of subjects (vpnr) and one factor with three levels (pred). The outcome (dv) is binary. In the first model I'd like to test for differences among factor levels (main effects only): gamm.11<-gamm4(dv ~ pred +s(hours24), random = ~
2007 Jun 22
1
two basic question regarding model selection in GAM
Qusetion #1 ********* Model selection in GAM can be done by using: 1. step.gam {gam} : A directional stepwise search 2. gam {mgcv} : Smoothness estimation using GCV or UBRE/AIC criterion Suppose my model starts with a additive model (linear part + spline part). Using gam() {mgcv} i got estimated degrees of freedom(edf) for the smoothing splines. Now I want to use the functional form of my model
2007 Oct 08
2
variance explained by each term in a GAM
Hello fellow R's, I do apologize if this is a basic question. I'm doing some GAMs using the mgcv package, and I am wondering what is the most appropriate way to determine how much of the variability in the dependent variable is explained by each term in the model. The information provided by summary.gam() relates to the significance of each term (F, p-value) and to the
2012 Apr 25
1
random effects in library mgcv
Hi, I am working with gam models in the mgcv library. My response variable (Y) is binary (0/1), and my dataset contains repeated measures over 110 individuals (same number of 0/1 within a given individual: e.g. 345-zero and 345-one for individual A, 226-zero and 226-one for individual B, etc.). The variable Factor is separating the individuals in three groups according to mass (group 0,1,2),
2003 Jan 07
1
help interpreting output?
Dear R experts, I'm hoping someone can help me to interpret the results of building gam's with mgcv in R. Below are summaries of two gam's based on the same dataset. The first gam (named "gam.mod") has six predictor variables. The second gam (named "gam.mod2") is exactly the same except it is missing one of the predictor variables. What is confusing me is
2013 Apr 17
1
mgcv: how select significant predictor vars when using gam(...select=TRUE) using automatic optimization
I have 11 possible predictor variables and use them to model quite a few target variables. In search for a consistent manner and possibly non-manual manner to identify the significant predictor vars out of the eleven I thought the option "select=T" might do. Example: (here only 4 pedictors) first is vanilla with "select=F" >
2011 Jul 19
2
Incorrect degrees of freedom for splines using GAMM4?
Hello, I'm running mixed models in GAMM4 with 2 (non-nested) random intercepts and I want to include a spline term for one of my exposure variables. However, when I include a spline term, I always get reported degrees of freedom of less than 1, even when I know that my spline is using more than 1 degree of freedom. For example, here is the code for my model: >
2005 Sep 20
1
Estimate predictor contribution in GAM models
hi, i'm using gam() function from package mgcv. if G is my gam object, then >SG=summary(G) Formula: y ~ +s(x0, k = 5) + s(x1) + s(x2, k = 3) Parametric coefficients: Estimate std. err. t ratio Pr(>|t|) (Intercept) 3.462e+07 1.965e+05 176.2 < 2.22e-16 Approximate significance of smooth terms: edf chi.sq p-value s(x0)
2005 Oct 05
3
testing non-linear component in mgcv:gam
Hi, I need further help with my GAMs. Most models I test are very obviously non-linear. Yet, to be on the safe side, I report the significance of the smooth (default output of mgcv's summary.gam) and confirm it deviates significantly from linearity. I do the latter by fitting a second model where the same predictor is entered without the s(), and then use anova.gam to compare the