similar to: SVM performance using laplace kernel is too slow

Displaying 20 results from an estimated 1000 matches similar to: "SVM performance using laplace kernel is too slow"

2008 Jun 25
1
stringdot
Hi!! I am trying to figure out how to use the string kernel "stringdot" in kernlab. k <- function(x,y) { (sum(x*y) +1)*exp(-0.001*sum((x-y)^2)) } class(k) <- "kernel" data(promotergene) ## train svm using custom kernel gene.k <- ksvm(Class~.,data=promotergene,kernel=k,C=10,cross=5) # works fine in this case gene.rbf <-
2010 Sep 24
0
kernlab:ksvm:eps-svr: bug?
Hi, A. In a nutshell: The training error, obtained as "error (ret)", from the return value of a ksvm () call for a eps-svr model is (likely) being computed wrongly. "nu-svr" and "eps-bsvr" suffer from this as well. I am attaching three files: (1) ksvm.R from the the kernlab package, un-edited, (2) ksvm_eps-svr.txt: (for easier reading) containing only eps-svr
2007 Sep 12
0
one-class SVM in kernlab
Hello, I'm trying to using ksvm() in the kernlab package to fit a one-class SVC, but I get a strage result on the cross-validation error estimate. For example, consider this code: data(spam) classifier <- ksvm(type~.,data=spam[which(spam[,'type']=='spam'),], type="one-svc",kernel="rbfdot",kpar=list(sigma=0.1),nu=0.05,cross=10) what I get is: >
2011 May 26
0
R svm prediction kernlab
Hi All, I am using ksvm method in kernlab R package for support vector machines. I learned the multiclass one-against-one svm from training data and using it to classify new datapoints. But I want to update/finetune the 'svm weights' based on some criteria and use the updated svm weights in the predict method framework. I don't know if its possible or not, how do classify new
2009 Dec 25
2
Help with SVM package Kernlab
Hi useR's, I am resending this request since I got no response for my last post and I am new to the list so pardon me if I am violating the protocol. I am trying to use the "Kernlab" package for training and prediction using SVM's. I am getting the following error when I am trying to use the predict function: > predictSvm = predict(modelforSVM, testSeq); Error in
2009 Dec 24
0
Error with Package "Kernlab" for SVM prediction
Hi All, I am trying to use the "Kernlab" package for training and prediction using SVM's. I am getting the following error when I am trying to use the predict function: > predictSvm = predict(modelforSVM, testSeq); Error in `contrasts<-`(`*tmp*`, value = "contr.treatment") : contrasts can be applied only to factors with 2 or more levels The training file is a
2012 Jul 31
1
kernlab kpca predict
Hi! The kernlab function kpca() mentions that new observations can be transformed by using predict. Theres also an example in the documentation, but as you can see i am getting an error there (As i do with my own data). I'm not sure whats wrong at the moment. I haven't any predict functions written by myself in the workspace either. I've tested it with using the matrix version and the
2011 Oct 06
0
linear classifiers with sparse matrices
I've been trying to get some linear classifiers (LiblineaR, kernlab, e1071) to work with a sparse matrix of feature data. In the case of LiblineaR and kernlab, it seems I have to coerce my data into a dense matrix in order to train a model. I've done a number of searches, read through the manuals and vignettes, but I can't seem to see how to use either of these packages with sparse
2012 Dec 10
0
Time Series Prediction using Gaussian Process
*Hello All,* I tried figuring out the problem, I was trying to use laplacedot to predict the long term, which however would not do a good job. Then, I tried to do a point by point prediction and building the model again, everytime. It shows me better results. I tried writing my kernel function (matern covariance function), and attached is the result of that. Red lines show the fit and blue lines
2007 Aug 14
0
kernlab ksvm() cross-validation prediction response vector
Hello, I would like to know, whether for the support vector classification function ksvm() the response values stored in object at ymatrix are cross validated outputs/predictions: Example code from package kernlab, function ksvm: library(kernlab) ## train a support vector machine filter <- ksvm(type~.,data=spam,kernel="rbfdot",kpar=list(sigma=0.05),C=5,cross=3) filter filter at
2009 Oct 23
1
Data format for KSVM
Hi, I have a process using svm from the e1071 library. it works. I want to try using the KSVM library instead. The same data used wiht e1071 gives me an error with KSVM. My data is a data.frame. sample code: svm_formula <- formula(y ~ a + B + C) svm_model <- ksvm(formula, data=train_data, type="C-svc", kernel="rbfdot", C=1) I get the following error:
2008 Sep 14
0
ksvm accessing the slots of S4 object
I am using kernlab to build svm models. I am not sure how to access the different slots of the object. For instance if I want to get the nuber of support vectors for each of model I am building and store it in a vector. >ksvm.model <- ksvm(Class ~ ., data = somedata,kernel = "vanilladot", cross = 10, type ="C-svc") >names(attributes(ksvm.model)) [1] "param"
2012 Sep 13
0
I need help for svm package kernlab in R
I use the svm package kernlab .I have two question. In R library(kernlab) m=ksvm(xtrain,ytrain,type="C-svc",kernel=custom function, C=10) alpha(m) alphaindex(m) I can get alpha value and alpha index about package. 1. Assumption that number of sample are 20. number of support vectors are 15. then rest 5`s alphas are 0? 2. I want use kernelMatrix xtrain=as.matrix(xtrain)
2006 Nov 24
1
How to find AUC in SVM (kernlab package)
Dear all, I was wondering if someone can help me. I am learning SVM for classification in my research with kernlab package. I want to know about classification performance using Area Under Curve (AUC). I know ROCR package can do this job but I found all example in ROCR package have include prediction, for example, ROCR.hiv {ROCR}. My problem is how to produce prediction in SVM and to find
2006 Nov 27
0
kernlab 0.9-0 on CRAN
A new version of kernlab has just been released. kernlab is a kernel-based Machine Learning package for R. kernlab includes the following functions: o ksvm() : Support Vector Machines for classification, regression, novelty detection, native multi-class classification, support for class-probability output and confidence intervals in regression. o gausspr()
2006 Nov 27
0
kernlab 0.9-0 on CRAN
A new version of kernlab has just been released. kernlab is a kernel-based Machine Learning package for R. kernlab includes the following functions: o ksvm() : Support Vector Machines for classification, regression, novelty detection, native multi-class classification, support for class-probability output and confidence intervals in regression. o gausspr()
2010 Aug 29
0
SVM comparison
I'm trying to run an epsilon regression model, and am comparing the results between e1071 and kernlab. I believe that I'm calling the ksvm and svm functions the same way but I'm getting different results: library(e1071); library(kernlab) ksvm(x=1:100, y=(1:100)/5, type="eps-svr", kpar=list(sigma=1)) svm(x=1:100, y=(1:100)/5, type="eps-regression", gamma=0.5) I
2008 Jul 21
0
SVM: Graphical representation
Hi, We are working on binary classification using kernlab for SVM based on more than 30 variables and now we want to provide a graphical representation of our results in 2D or 3D. We have checked the graphical functionality of kernlab but it seems that only works with 2 principal components, and we use to work with more than 8 PC due to the variability of our data. We are thinking in some kind
2007 Oct 30
0
kernlab/ ksvm: class.weights & prob.model in binary classification
Hello list, I am faced with a two-class classification problem with highly asymetric class sizes (class one: 99%, class two: 1%). I'd like to obtain a class probability model, also introducing available information on the class prior. Calling kernlab/ksvm with the line > ksvm_model1<-ksvm(as.matrix(slides), as.factor(Class), class.weights= c("0" =99, "1" =1),
2009 Oct 06
0
Kernlab: multidimensional targets in rvm(), ksvm(), gausspr()
Hi there, I'm trying to do a regression experiment on a multidimensional dataset where both x and y in the model are multidimensional vectors. I'm using R version 2.9.2, updated packages, on a Linux box. I've tried gausspr(), ksvm() and rvm(), and the models are computed fine, but I'm always getting the same error message when I try to use predict(): "Error in