search for: heq

Displaying 6 results from an estimated 6 matches for "heq".

Did you mean: he
2011 Dec 21
1
constrOptim and further arguments
Dear List, I have the code below, where I am using the constrained optimisation package, 'constrOptim.nl' to find the values of two values, b0 and b1. I have no problems when I enter further variable information DIRECTLY into the functions, fn, and heq. In this instance I require fn to have -0.0075 appended to it, and in the case of heq, h[1] has -0.2. library(alabama) fn<-function(x) (((1/(1+exp(-x[1]+x[2]))+(1/(1+exp(-x[1])))+(1/(1+exp(-x[1]-x[2])))))/3)-0.0075 heq <- function(x) { h <- rep(NA,2) h[1] <- (1-(1/(1+exp(-x[1]))/(1/...
2013 Feb 10
3
Constrained Optimization in R (alabama)
...nderstand why the constraints are not satisfied at the solution. I must be misinterpreting how to specify the constrains somehow. library(alabama) ff <- function (x) { mm <- matrix(c(10, 25, 5, 10), 2, 2) matx <- matrix(x, 2, 2) -sum(apply(mm ^ matx, 1, prod)) } ### constraints heq <- function(x) { h <- rep(NA, 1) h[1] <- x[1] + x[3] -1 h[2] <- x[2] + x[4] -1 h[3] <- x[1] * x[3] h[4] <- x[2] * x[4] h } res <- constrOptim.nl(par = c(1, 1, 1, 1), fn = ff, heq = heq) res$convergence #why NULL? matrix(round(res$par, 2), 2, 2...
2010 Sep 21
2
Trouble with Optimization in "Alabama" Package
...(15,40,50,15) fn=function(x,...){ return(-1*(((x[1]^y[5])*(x[3]^(1-y[5])))*(((x[2]^y[6])*(x[4]^(1-y[6])))))) } hin=function(x,...){ h=rep(NA,2) h[1]=((x[1]^y[5])*(x[3]^(1-y[5])))-((y[1]^y[5])*(y[3]^(1-y[5]))) h[2]=((x[2]^y[6])*(x[4]^(1-y[6])))-((y[2]^y[6])*(y[4]^(1-y[6]))) return(h) } heq=function(x,...){ h=rep(NA,2) h[1]=x[1]+x[2]-y[1]-y[2] h[2]=x[3]+x[4]-y[3]-y[4] return(h) } ans2=constrOptim.nl(par=p1,fn=fn,hin=hin,heq=heq,control.outer=list(itmax= 1000,mu0=.00001),list(y,y,y)) Any advice or explanation of my errors would be greatly appreciated! -- Erik O. Kimbrough D...
2011 Dec 29
0
problem of "constrOptim.nl", no hessian and convergence values
...vergence value of "0". Since constraints are necessary for the identifiability of my mode, I have to switch to "constrOptim.nl". Following is my code of the constraint. Could you please help me to check is there anything wrong? Thank a lot! # define the equality constraint heq<-function(par){ u<-par[1:m] a<-par[(m+1):(m+n)] b<-par[(m+n+1):(m+2*n)] h<-rep(NA,2) h[1]<-mean(u)-0 h[2]<-var(u)-1 h } heq.jac<-function(par){ u<-par[1:m] a<-par[(m+1):(m+n)] b<-par[(m+n+1):(m+2*n)] j <- matrix(NA, 2, length(par)) j[1,]<-c(rep(1,m),rep(0,2*n...
2010 Aug 10
1
[Fwd: Re: optimization subject to constraints]
-------------- next part -------------- An embedded message was scrubbed... From: Gildas Mazo <gildas.mazo at curie.fr> Subject: Re: [R] optimization subject to constraints Date: Tue, 10 Aug 2010 15:49:19 +0200 Size: 4924 URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20100810/78862894/attachment.eml>
2011 May 18
1
Constrainted Nonlinear Optimization - lack of convergence
Hello, I am attempting to utilize the 'alabama' package to solve a constrained nonlinear optimization problem. The problem has both equality and inequality constraints (heq and hin functions are used). All constraints are smooth, i.e. I can differentiate easily to produce heq.jac and hin.jac functions. My initial solution is feasible; I am attempting to maximize a function, phi. As such, I create an objective or cost function '-phi', and the gradient of th...